Dělitelnost - slovní úlohy a příklady

Počet nalezených příkladů: 252

  • Spravedlivost
    penize_5 Oldřich má jednu korunu. Petr má pětikorunu, dvoukorunu a korunu. Radek má dvacetikorunu, desetikorunu a pětikorunu. Chlapci dostali jednu padesátikorunu a jednu korunu. Jak se o peníze spravedlivě podělí, když nemohou mince rozměnit?
  • Zverimex
    fish Ve Zverimexu vyprodávali rybky z jednoho akvária. Ondra chtěl polovinu všech rybek, ale aby nemuseli žádnou rybku řezat, dostal o polovinu rybky víc, než požadoval. Matěj si přál polovinu zbylých rybek, ale stejně jako Ondřej dostal o polovinu rybky víc n
  • Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  • Z7-1-6 MO 2017
    tanks_1 Vodník Chaluha naléval mlhu do rozmanitých, různě velkých nádob, které si pečlivě seřadil na polici. Při nalévání postupoval postupně z jedné strany, žádnou nádobu nepřeskakoval. Do každé nádoby se vejde alespoň decilitr mlhy. Kdyby naléval mlhu sedmilitr
  • Diofantos
    diofantos_1 O tomto řeckom matematikovi z Alexandrie kromě toho, že žil kolem roku 250 před Kristem, mnoho nevíme. Díky jednomu z jeho obdivovatelů, který popsal jeho život pomocí algebraických hádanek, víme, jakého se dožil věku. Diofantova mládí trvala 1/6 jeho živ
  • Mnohonožka Z6–I–3
    mnohonozky.JPG Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  • Z7–I–4 2018 MO Betka
    gears_mo Karel si hrál s ozubenými koly, která byla sestavena do soukolí. Když zatočil jedním kolem, točila se všechna ostatní. První kolo mělo 32 a druhé 24 zubů. Když se třetí kolo otočilo (je uprostřed soukolí) přesně osmkrát, druhé kolo udělalo pět otáček a čá
  • MO Z9-I-6 2019
    triangles Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly. Jaku
  • Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  • Z9–I–3 - 2017 kafemlýnky2
    robots Roboti Robert a Hubert skládají a rozebírají kafemlýnky. Přitom každý z nich kafemlýnek složí čtyřikrát rychleji, než jej sám rozebere. Když ráno přišli do dílny, několik kafemlýnků už tam bylo složeno. V 7:00 začal Hubert skládat a Robert rozebírat, přes
  • Z9-I-4
    numbers_30 Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devíti
  • Z9 – I – 6 2018 MO
    numbers2_49 Přirozené číslo N nazveme bombastické, pokud neobsahuje ve svém zápise žádnou nulu a pokud žádné menší přirozené číslo nemá stejný součin číslic jako číslo N. Karel se nejprve zajímal o bombastická prvočísla a tvrdil, že jich není mnoho. Vypište všechna d

Omlouváme se, ale v této kategorii není mnoho příkladů.
Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.