Základní funkce - slovní úlohy a příklady

Počet nalezených příkladů: 2865

  • C – I – 3 MO 2018
    olympics_10 Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
  • Inženýr Kažimír
    demagog_smer_1 Rozdíl mezi politikem-demagogom a racionální uvažujícím člověkem alespoň se základním vzděláním krásné ilustruje příklad z TV diskuse. 'Inženýr' Kažimír tvrdí že během jejich úřadování došlo k velkému poklesu ceny zemního plynu, pokud cena se změnila z 0.
  • MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  • Tři tovaryši
    tri-sourozenci_1 Tři tovaryši na zkušené dospěli zcela unaveni k hospodě a objednali si - bylo to koncem léta - k večeři švestkové knedlíky. Než byla večeře připravena, tloukli špačky a dřímali u stolu, až nadobro usnuli. Tu přinesla hospodská mísu s večeří a vybídla je k
  • MO Z7–I–3 2017
    zoo_2 Zoologická zahrada nabízela školním skupinám výhodné vstupné: každý pátý žák dostává vstupenku zdarma. Pan učitel 6.A spočítal, že pokud koupí vstupné dětem ze své třídy, ušetří za čtyři vstupenky a zaplatí 1 995 Kč. Paní učitelka 6.B mu navrhla, ať koupí
  • Výtah
    vytah-sachta V domech s větším počtem pater se používají výtahy. Pro dopravu osob se nejčastěji používá trakční výtah s protizávažím. V horní části šachty je strojovna s motorem. Kabina výtahu je zavěšena na laně, které je nahoře vedeno přes dvě kladky k protizávaží.
  • Z9-I-6 MO 2017
    olympics_1 Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
  • MO Z8–I–5 - 2018
    murar_1 Král dal zedníku Václavovi za úkol postavit zeď silnou 25 cm, dlouhou 50 m a vysokou 2 m. Pokud by Václav pracoval bez přestávky a stejným tempem, postavil by zeď za 26 hodin. Podle platných královských nařízení však musí Václav dodržovat následující podm
  • Pracák
    UPSVAR Úřad práce je státní instituce, která zabezpečuje flákání a odpočinek pro své tzv. klienty. Mise úřadu práce je za peníze daňových poplatníků zajistit odpočinek a výhody pro ty co pracovat nechtějí. Lidově řečeno smyslem Úřadu práce je tvorba co největšíh
  • Zákusky Z8-I-5
    cukriky_5 Maminka donesla 10 zákusků tří druhů: kokosek bylo méně než laskonek a nejvíc bylo karamelových kostek. Jarda si vybral dva zákusky různých druhů, Štěpán udělal totéž a na Marcelu zbyly pouze zákusky stejného druhu. Kolik kokosek, laskonek a karamelových
  • Myška Hryzka
    myska_hryzka Myška Hryzka našla 27 stejných krychliček sýra. Nejdříve si z nich poskládala velkou krychli a chvíli počkala, než se sýrové krychličky k sobě přilepily. Potom z každé stěny velké krychle vyhryzla střední krychličku. Poté snědla i krychličku, která byla v
  • Klávesy
    klavesy Míša mel na poličce malé klávesy, které vidíte na obrázku. Na bílých klávesách byly vyznačeny jejich tóny. Klávesy našla malá Klára. Když je brala z poličky, vypadly jí z ruky a všechny bílé klávesy se z nich vysypaly. Aby se bratr nezlobil, začala je Klá
  • MO 2019 Z9–I–5
    olympics Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy
  • Z9 – I – 1 MO 2019
    oriesky Ondra, Matěj a Kuba se vracejí ze sbírání ořechů, celkem jich mají 120. Matěj si stěžuje, že Ondra má jako vždy nejvíc. Otec přikáže Ondrovi, aby přisypal ze svého Matějovi tak, aby mu počet ořechů zdvojnásobil. Nyní si stěžuje Kuba, že nejvíc má Matěj. N
  • Pět dívek
    cats_cicky Pět dívek cestuje autobusem. Každá drží v každé ruce dva košíky. V každém košíku jsou čtyři kočky. Každá kočka má tři koťata. Dvě dívky vystoupí. Kolik nohou je v autobusu?
  • Z9 – I – 2 MO 2018
    equliateral V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.
  • Cihla
    brick Cihla váží 3 kg a půl cihly. Kolik váží jedna cihla?
  • Na školním
    venn_intersect Na školním výletě si z 28 dětí 17 koupilo v cukrárně zmrzlinu nebo čokoládu. 12 dětí si koupilo čokoládu, 9 zmrzlinu. Kolik dětí si koupilo zmrzlinu i čokoládu? Kolik dětí si nekoupilo zmrzlinu? Kolik dětí si nekoupilo čokoládu?
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  • Vláček
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vagonu

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.