Pážata MO Z6-I-4

Jednou si král zavolal všechna svá pážata a postavil je do řady. Prvnímu pážeti dal určitý počet dukátů, druhému dal o dva dukáty méně, třetímu opět o dva dukáty méně a tak dále. Když došel k poslednímu pážeti, dal mu příslušný počet dukátů, otočil se a obdobným způsobem postupoval na začátek řady (tj. Předposlednímu pážeti dal o dva dukáty méně než před chvílí poslednímu atd. ). Na první páže v tomto kole vyšly dva dukáty. Poté jedno z pážat zjistilo, že má 32 dukátů.

Kolik mohl mít král pážat a kolik celkem jim mohl rozdat dukátů? Určete všechny možnosti.

Vaše odpověď:



Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 3 komentáře:
#
Iva
Mám tomu rozumět tak, že počítáte jedno kolo tak, že král jde od prvního pážete zpět k prvnímu pážeti a druhé kolo taktéž??? Jinak vašemu výpočtu nerozumím. Já jsem počítala, že král šel od prvního pážete k poslednímu, což bylo jedno kolo, pak se otočil a zahájil druhé kolo tím, že přešel k předposlednímu pážeti a pokračoval k prvnímu.

#
Matematik
ano, už jsme na to i my přišli .... je to jednoduche a sami jsme to komplikovaně hledali řešení ... Je třeba si rozepsat par pažet např. pro n = 2, n = 3, n = 4 a z toho indukcí odvodit vztah pro obecně vztah dukátů a pažet. Vyjde ze prve az předposlední dostanou stejný počet dukátů a to 4n a posledně pouze 2n. Otazka pak dále je ze správné resení su ty kde 4n = 32 nebo 2n = 32, tj n = 8 nebo n = 16. pocet dukátů uz sčítání + násobení

#
Olga
Nejde mi o výsledek, ale o to, jak matematik chápe větu z níže uvedeného příkladu: "otočil se a obdobným způsobem postupoval na začátek řady (tj. předposlednímu pážeti dal o dva dukáty méně než před chvílí poslednímu atd. )"
Doma se totiž přeme, jestli tomu poslednímu po otočení dal znova a pokračoval k předposlednímu, nebo v prvním kole dal poslednímu, otočil se a hned šel k předposlednímu, kterému pak dal o dva méně než poslednímu v předchozím kole.

avatar