Probabilities

If probabilities of A, B and A ∩ B are P (A) = 0.62 P (B) = 0.78 and P (A ∩ B) = 0.26 calculate the following probability (of union. intersect and opposite and its combinations):

Result

P(A′) =  0.38
P(B′) =  0.22
P(A ∪ B) =  1.14
P(A′∩ B) =  0.52
P(A ∩ B′) =  0.36
P[( A ∪ B)′] =  -0.14
P( A′ ∪ B) =  0.64

Solution:

P(A′) = 1-0.62 = 0.38
P(B′) = 1-0.78 = 0.22
P(A ∪ B) = 0.62+0.78-0.26 = 1.14
P(A′∩ B) = 0.78-0.26 = 0.52
P(A ∩ B′) = 0.62-0.26 = 0.36
P[( A ∪ B)′] = 1-(0.62+0.78-0.26) = -0.14
P( A′ ∪ B) = 1-0.62+ 0.26 = 0.64







Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




To solve this example are needed these knowledge from mathematics:

Would you like to compute count of combinations?

Next similar examples:

  1. Class - boys and girls
    kresba In the class are 60% boys and 40% girls. Long hair has 10% boys and 80% girls. a) What is the probability that a randomly chosen person has long hair? b) The selected person has long hair. What is the probability that it is a girl?
  2. Lottery
    lottery Fernando has two lottery tickets each from other lottery. In the first is 973 000 lottery tickets from them wins 687 000, the second has 1425 000 lottery tickets from them wins 1425 000 tickets. What is the probability that at least one Fernando's ticket w
  3. Balls
    spheres_1 The urn is 8 white and 6 black balls. We pull 4 randomly balls. What is the probability that among them will be two white?
  4. Candies
    bonbons_2 In the box are 12 candies that look the same. Three of them are filled with nougat, five by nuts, four by cream. At least how many candies must Ivan choose to satisfy itself that the selection of two with the same filling? ?
  5. Probability
    loto What are the chances that the lottery, in which the numbers are drawn 5 of 50 you win the first prize?
  6. Cards
    cards_4 The player gets 8 cards of 32. What is the probability that it gets a) all 4 aces b) at least 1 ace
  7. Balls
    spheres From the urn in which are 7 white balls and 17 red, gradually drag 3-times without replacement. What is the probability that pulls balls are in order: red red red?
  8. Line
    skew_lines It is true that the lines that do not intersect are parallel?
  9. Blocks
    cubes3_1 There are 9 interactive basic building blocks of an organization. How many two-blocks combinations are there?
  10. Theorem prove
    thales_1 We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  11. Average
    chart If the average(arithmetic mean) of three numbers x,y,z is 50. What is the average of there numbers (3x +10), (3y +10), (3z+10) ?
  12. Confectionery
    cukrovinky The village markets have 5 kinds of sweets, one weighs 31 grams. How many different ways a customer can buy 1.519 kg sweets.
  13. Sequence
    seq_1 Write the first 6 members of these sequence: a1 = 5 a2 = 7 an+2 = an+1 +2 an
  14. Teams
    football_team How many ways can divide 16 players into two teams of 8 member?
  15. Reference angle
    anglemeter Find the reference angle of each angle:
  16. Sequence 2
    seq2 Write the first 5 members of an arithmetic sequence a11=-14, d=-1
  17. Trigonometry
    sinus Is true equality? ?