# Right

Determine angles of the right triangle with the hypotenuse c and legs a, b, if:

$3a +4b = 4.9c$

Result

α =  64.6 °
β =  25.4 °
γ =  90 °

#### Solution:

$\ \\ 3a +4b = 4.9c \ \\ \ \\ c=1 \ \\ 3a +4b = 4.9 \ \\ a^2+b^2 =1 \ \\ \ \\ a=\dfrac{ 4.9 - 4 b}{ 3} \ \\ \ \\ \dfrac{ (4.9 - 4 b)^2}{ 3^2} + b^2 =1 \ \\ (4.9 - 4 b)^2 + 3^2 b^2 = 3^2 \ \\ \ \\ \ \\ 25b^2 -39.2b +15.01 =0 \ \\ \ \\ p=25; q=-39.2; r=15.01 \ \\ D = q^2 - 4pr = 39.2^2 - 4\cdot 25 \cdot 15.01 = 35.64 \ \\ D>0 \ \\ \ \\ b_{1,2} = \dfrac{ -q \pm \sqrt{ D } }{ 2p } = \dfrac{ 39.2 \pm \sqrt{ 35.64 } }{ 50 } \ \\ b_{1,2} = 0.784 \pm 0.119398492453 \ \\ b_{1} = 0.903398492453 \ \\ b_{2} = 0.664601507547 \ \\ \ \\ \text{ Factored form of the equation: } \ \\ 25 (b -0.903398492453) (b -0.664601507547) = 0 \ \\ \ \\ \alpha = \arcsin b = 64.6 ^\circ$
$\beta = \arccos b = 25.4 ^\circ$
$\gamma = 90 ^\circ$

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

#### Following knowledge from mathematics are needed to solve this word math problem:

Looking for help with calculating roots of a quadratic equation? Pythagorean theorem is the base for the right triangle calculator. Most natural application of trigonometry and trigonometric functions is a calculation of the triangles. Common and less common calculations of different types of triangles offers our triangle calculator. Word trigonometry comes from Greek and literally means triangle calculation.

## Next similar math problems:

1. Isosceles triangle 10
In an isosceles triangle, the equal sides are 2/3 of the length of the base. Determine the measure of the base angles.
2. Trigonometric functions
In right triangle is: ? Determine the value of s and c: ? ?
3. Mast
Mast has 17 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 9.3°. Determine the height of the mast, if the sun above the horizon is at angle 44°30'.
4. IS triangle
Calculate interior angles of the isosceles triangle with base 38 cm and legs 26 cm long.
5. Two forces
Two forces with magnitudes of 25 and 30 pounds act on an object at angles of 10° and 100° respectively. Find the direction and magnitude of the resultant force. Round to two decimal places in all intermediate steps and in your final answer.
6. Right triangle
Calculate the missing side b and interior angles, perimeter and area of ​​a right triangle if a=10 cm and hypotenuse c = 16 cm.
7. Trapezoid MO
The rectangular trapezoid ABCD with right angle at point B, |AC| = 12, |CD| = 8, diagonals are perpendicular to each other. Calculate the perimeter and area of ​​the trapezoid.
8. Regular 5-gon
Calculate area of the regular pentagon with side 7 cm.
9. Rectangle
Calculate the length of the side GN and diagonal QN of rectangle QGNH when given: |HN| = 25 cm and angle ∠ QGH = 28 degrees.
10. Ratio iso triangle
The ratio of the sides of an isosceles triangle is 7:6:7 Find the base angle to the nearest answer correct to 3 significant figure.
11. Church tower
Archdeacon church in Usti nad Labem has diverted tower by 186 cm. The tower is 65 m high. Calculate the angle by which the tower is tilted. Result write in degree's minutes.