Trojuholník 15 24 29




Tupouhlý rôznostranný trojuholník.

Dĺžky strán trojuholníka:
a = 15
b = 24
c = 29

Obsah trojuholníka: S = 179,72220075561
Obvod trojuholníka: o = 68
Semiperimeter (poloobvod): s = 34

Uhol ∠ A = α = 31,09439258976° = 31°5'38″ = 0,54326913843 rad
Uhol ∠ B = β = 55,72113355656° = 55°43'17″ = 0,97325207692 rad
Uhol ∠ C = γ = 93,18547385367° = 93°11'5″ = 1,62663805001 rad

Výška trojuholníka na stranu a: va = 23,96329343408
Výška trojuholníka na stranu b: vb = 14,9776833963
Výška trojuholníka na stranu c: vc = 12,39546212108

Ťažnica: ta = 25,53991855782
Ťažnica: tb = 19,72330829233
Ťažnica: tc = 13,79331142241

Polomer vpísanej kružnice: r = 5,28659413987
Polomer opísanej kružnice: R = 14,52224284743

Súradnice vrcholov: A[29; 0] B[0; 0] C[8,44882758621; 12,39546212108]
Ťažisko: T[12,48327586207; 4,13215404036]
Súradnice stredu opísanej kružnice: U[14,5; -0,80768015819]
Súradnice stredu vpísanej kružnice: I[10; 5,28659413987]

Vonkajšie uhly trojuholníka:
∠ A' = α' = 148,90660741024° = 148°54'22″ = 0,54326913843 rad
∠ B' = β' = 124,27986644344° = 124°16'43″ = 0,97325207692 rad
∠ C' = γ' = 86,81552614633° = 86°48'55″ = 1,62663805001 rad


Vypočítať ďaľší trojuholník

Ako sme vypočítali tento trojuholník?


Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený.
a=15 b=24 c=29

1. Obvod trojuholníka je súčtom dĺžok jeho troch strán

2. Polovičný obvod trojuholníka

Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.

s=2o=268=34

3. Obsah trojuholníka pomocou Herónovho vzorca

Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.

4. Výpočet výšiek trojuholníku z jeho obsahu.

Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.

5. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety

Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 24 29242+292152)=31°538"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 15 29152+292242)=55°4317" γ=180°αβ=180°31°538"55°4317"=93°115"

6. Polomer vpísanej kružnice

Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.

7. Polomer opísanej kružnice

Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.

R=4 rsabc=4 5,286 3415 24 29=14,52

8. Výpočet ťažníc

Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.


Vypočítať ďaľší trojuholník