Řezy kužele
Kužel s poloměrem podstavy 16 cm a výškou 16 cm rozdělíme rovinami rovnoběžnými s podstavou na tři tělesa. Roviny rozdělí výšku kužele na tři stejné části. Určete poměr objemů největšího a nejmenšího vzniklého tělesa.
Správná odpověď:

Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
Chcete zaokrouhlit číslo?
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
Chcete zaokrouhlit číslo?
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
algebraaritmetikastereometriezákladní operace a pojmyJednotky fyzikálních veličinÚroveň náročnosti úkolu
Související a podobné příklady:
- Je dán 21
Je dán pravidelný čtyřboký jehlan s délkou podstavné hrany a=15cm a výškou v=21cm. Rovnoběžně s podstavou vedeme dvě roviny tak, že rozdělil výšku jehlanu na tři stejné části. Vypočítej poměr objemů vzniklých 3 těles.
- Kužel
Rotační kužel s výškou h = 15 dm a poloměrem podstavy r = 2 dm rozřízneme rovinou rovnoběžnou s podstavou. Určitě vzdálenost vrcholu kužele od této roviny, jestliže vzniklé tělesa mají stejný objem.
- Komolý kužel
Kužel s poloměrem podstavy 12 cm a výškou 20 cm byl ve vzdálenosti 6 cm od podstavy seříznutý, čímž vznikl komolý kužel. Zjistěte poloměr podstavy komolého kužele.
- Objem kužele
Vypočítejte objem kužele s poloměrem podstavy r a výškou v. a) r = 6 cm, v = 8 cm b) r = 0,9 m, v = 2,3 m c) r = 1,4 dm, v = 30 dm
- Rotační kužel II
Vypočítejte povrch rotačního kužele o poloměru podstavy r=17 cm a výškou v=16 cm.
- Koule
Průnik roviny a koule je kruh s poloměrem 60mm. Kužel, jehož podstavou je tento kruh a jehož vrchol leží ve středu koule má výšku 34mm. Vypočítejte povrch a objem koule.
- Povrch kužele
Vypočítejte povrch kužele, když znáte průmer podstavy 25cm a vyšku 40 cm.