Soustava rovnic + bikvadratická rovnice - příklady a úlohy
Počet nalezených příkladů: 15
- Tři čísla
Součin tří přirozených čísel je 600. Kdybychom jednoho činitele zmenšili o 10, zmenšil by se součin o 400. Kdybychom místo toho jednoho činitele zvětšili o 5, zvětšil by se součin na dvojnásobek původní hodnoty. Která tři čísla mají tuto vlastnost?
- Geometrická
Geometrická posloupnost se šesti členy má součet všech šesti členů rovnající se 63; součet sudých členů má hodnotu 42. Určete tyto členy.
- Komolý
Komolý pravidelný čtyřboký jehlan má objem 74 cm3, výšku v = 6 cm a obsah dolní podstavy o 15 cm² větší než obsah horní podstavy. Vypočítejte obsah horní podstavy.
- Aritmeticka i geometrická
Tři čísla, které tvoří aritmetickou posloupnost, mají součet 30. Pokud odečteme od prvního 5, od druhého 4 a třetí ponecháme, dostaneme geometrickou posloupnost. Urči členy AP i GP.
- Povrch pláště , objem
V rotačním válci je dáno: povrch pláště (bez podstav) S = 96 cm² a objem V = 192 cm krychlových. Vypočítejte poloměr a výšku tohoto válce.
- V rotačním válci
V rotačním válci je dáno: povrch S = 96 cm² a objem V = 192 cm krychlových. Vypočtěte jeho poloměr a výšku.
- Stěnové úhlopříčky
Pokud jsou stěnové úhlopříčky kvádru x, y a z (diagonály), pak najděte objem kvádru. Vyřešte pro x = 1,2, y = 1,8, z = 1,4
- Dve tětivy
Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.
- Rovnice hyperboly
Napište rovnici hyperboly se středem S [0; 0], která prochází body: A [5; 3] B [8; -10]
- Rotační kužel 6
V rotačního kuželu = 100π S rotačního kuželu = 90π v=? r=?
- MO Z8-I-1 2018
Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
- Délky stran a úhly
Vypočtěte délky stran a úhly v pravoúhlém trojúhelníku. S = 210, o = 70.
- Součet velikostí hran
Vypočtěte povrch kvádru, je-li dán součet velikostí jeho hran a+b+c=19 cm a velikost tělesové úhlopříčky u=13 cm.
- Kvádr
Kvádr s hranou a=7 cm a tělesových úhlopříčkou u=33 cm má objem V=3136 cm³. Vypočítejte velikosti ostatních hran.
Máš příklad, nad kterým si přemýšlíš alespoň 10 minut? Pošli nám příklad a my Ti ho zkusíme vypočítat.