Cone A2V

Surface of cone in the plane is a circular arc with central angle of 126° and area 415 cm2.

Calculate the volume of a cone.

Correct result:

V =  881.1 cm3

Solution:

A=126 π180=126 3.14161802.1991 rad S=415 cm2  S=πs2 A/(2π)  s=2 S/A=2 415/2.199119.4274 cm r=A s/(2π)=2.1991 19.4274/(2 3.1416)6.7996 cm h=s2r2=19.427426.7996218.1986 cm  V=13 π r2 h=13 3.1416 6.79962 18.1986=881.1 cm3A=126 \cdot \ \dfrac{ \pi }{ 180 }=126 \cdot \ \dfrac{ 3.1416 }{ 180 } \doteq 2.1991 \ \text{rad} \ \\ S=415 \ \text{cm}^2 \ \\ \ \\ S=\pi s^2 \cdot \ A / (2 \pi) \ \\ \ \\ s=\sqrt{ 2 \cdot \ S/A }=\sqrt{ 2 \cdot \ 415/2.1991 } \doteq 19.4274 \ \text{cm} \ \\ r=A \cdot \ s/(2 \pi)=2.1991 \cdot \ 19.4274/(2 \cdot \ 3.1416) \doteq 6.7996 \ \text{cm} \ \\ h=\sqrt{ s^2-r^2 }=\sqrt{ 19.4274^2-6.7996^2 } \doteq 18.1986 \ \text{cm} \ \\ \ \\ V=\dfrac{ 1 }{ 3 } \cdot \ \pi \cdot \ r^2 \cdot \ h=\dfrac{ 1 }{ 3 } \cdot \ 3.1416 \cdot \ 6.7996^2 \cdot \ 18.1986=881.1 \ \text{cm}^3



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Please write to us with your comment on the math problem or ask something. Thank you for helping each other - students, teachers, parents, and problem authors.

Showing 0 comments:
avatar




Tips to related online calculators
Need help calculate sum, simplify or multiply fractions? Try our fraction calculator.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • A concrete pedestal
    frustum-of-a-right-circular-cone A concrete pedestal has a shape of a right circular cone having a height of 2.5 feet. The diameter of the upper and lower bases are 3 feet and 5 feet, respectively. Determine the lateral surface area, total surface area, and the volume of the pedestal.
  • Cone side
    kuzel3 Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side.
  • Axial section of the cone
    rez_kuzel The axial section of the cone is an isosceles triangle in which the ratio of cone diameter to cone side is 2: 3. Calculate its volume if you know its area is 314 cm square.
  • Truncated cone 6
    frustum-of-a-right-circular-cone Calculate the volume of the truncated cone whose bases consist of an inscribed circle and a circle circumscribed to the opposite sides of the cube with the edge length a=1.
  • The conical
    cone_1 The conical candle has a base diameter of 20 cm and a side of 30 cm. How much dm ^ 3 of wax was needed to make it?
  • Tetrahedral pyramid
    ihlan Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´.
  • Triangular prism
    hranol3b The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism.
  • Triangular prism
    prism3_1 The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm3? And the surface cm2?
  • Triangular prism - regular
    prism3s The regular triangular prism is 7 cm high. Its base is an equilateral triangle whose height is 3 cm. Calculate the surface and volume of this prism.
  • Triangular prism,
    prism3s The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm3 (l).
  • The quadrilateral pyramid
    jehlan_4b_obdelnik The quadrilateral pyramid has a rectangular base of 24 cm x 3.2dm and a body height of 0.4m. Calculate its volume and surface area.
  • Block or cuboid
    cuboid The wall diagonals of the block have sizes of √29cm, √34cm, √13cm. Calculate the surface and volume of the block.
  • The hemisphere
    naklon_koule The hemisphere container is filled with water. What is the radius of the container when 10 liters of water pour from it when tilted 30 degrees?
  • Embankment
    nasyp The railway embankment 300 m long has a cross section of an isosceles trapezoid with bases of 14 m and 8 m. The trapezoidal arms are 5 m long. Calculate how much m3 of soil is in the embankment?
  • Hexagonal pyramid
    hexa_pyramid Find the volume of a regular hexagonal pyramid, the base edge of which is 12 cm long and the side edge 20 cm.
  • Regular hexagonal prism
    hexagon_prism2 Calculate the volume of a regular hexagonal prism whose body diagonals are 24cm and 25cm long.
  • Kostka
    sphere_in_cube Kostka je vepsána do koule o poloměru r = 6 cm. Kolik procent tvoří objem kostky z objemu koule?