Telefóny

Sekretárka v podniku A telefonicky volá centrálu v podniku B v dobe najväčšej zaťaženosti telefónnych liniek, kedy pravdepodobnosť, že linka nebude obsadená je 0,25. Jednotlivé pokusy o spojenie opakuje po niekoľkých minútach tak dlho, pokým nebude s centrálou spojená. Aká je pravdepodobnosť toho, že sekretárka dosiahne spojenie s centrálou max pri 5 pokuse o spojenie?

Výsledok

p =  0.99902

Riešenie:

p=10.255=0.99902p=1-0.25^{ 5 } = 0.99902



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlete. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 0 komentárov:
1st comment
Buďte prvý, kto napíše komentár!
avatar




Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:

Chceš si dať zrátať kombinačné číslo?

Ďaľšie podobné príklady a úlohy:

  1. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  2. Priadza
    priadza Pracovníčka obsluhuje 600 vretien, na ktoré sa navíja priadza. Pravdepodobnosť roztrhnutia priadze na každom z vretien za čas t je 0,005. a) Určte rozdelenie pravdepodobnosti počtu roztrhnutých vretien za čas t a strednú hodnotu a rozptyl. b) Aká je prav
  3. Gule
    spheres Z osudia, v ktorom je 6 gulí bielych a 15 červených, ťaháme postupne 4-krát bez vrátenia. Aká je pravdepodobnosť, že vytiahneme gule v poradí: červená biela červená červená?
  4. Guličky
    stats Máme n-rovnakých gulí (číslované od 1-n), vyberajú sa bez vracania. Urči: 1) Pravdepodobnosť, že aspoň pri 1 ťahu sa číslo ťahu zhoduje s číslom gule? 2) Určiť strednú hodnotu a rozptyl počtu gulí, kde sa zhoduje číslo gule s číslom poradí.
  5. Lotéria
    lottery Fernando má dva žreby, každý z inej lotérie. V prvej lotérii je 973 000 žrebov a z nich vyhráva 687 000, v druhej lotérii je 1425 000 žrebov a z nich vyhráva 1102 000 žrebov. Aká veľká je pravdepodobnosť, že vyhrá aspoň jeden Fernando-ov žreb?
  6. Výraz s faktoriálom
    5times_1 Určte hodnotu tohto výrazu: 6!·10^-3
  7. Nádoby 2
    gule_4 V prvej nádobe máme 3 biele a 6 čiernych guľôčok. V druhej nádobe máme 2 biele a 6 čiernych guľôčok. Z prvej nádoby náhodne preložíme do druhej nádoby 1 guľôčku. Aká je pravdepodobnosť, že potom z druhej nádoby vyberiem 2 biele guľôčky?
  8. 5 členov
    pst3.JPG Napíšte prvých 5 členov geometrickej postupnosti a určite, či je rastúca/klesajúca: a1 = 3 q = -2
  9. Pravdepodobnosť 9
    probability_1 Manželka neprišla včas domov z práce. Manžel zo skúsenosti vie, že s pravdepodobnosťou 0,3 sa zarozprávala s kolegyňou alebo s pravdepodobnosťou 0,6 išla na nákupy alebo s pravdepodobnosťou 0,1 sa zdržala z iných dôvodov. Manžel vie, že o 16,00 bude manžel
  10. Trieda
    kresba V triede je 60% chlapcov a 40% dievčat. Dlhé vlasy má 10% chlapcov a 80% dievčat. a) Aká je pravdepodobnosť, že náhodne vybraná osoba má dlhé vlasy? b) Vybraná osoba má dlhé vlasy. Aká je pravdepodobnosť, že je to dievča?
  11. Firma
    probability Firma doteraz vyrobila 500 000 áut a z toho 5000 bolo vadných. Aká je pravdepodobnosť, že z dennej produkcie 50 áut bude najviac jedno auto vadné?
  12. Geometrická postupnosť 4
    Koch_Snowflake_Triangles Je daná geometrická postupnosť a3 = 7 a12 = 3. Vypočítajte s23 (=súčet prvých 23 členov tejto postupnosti).
  13. Jedna zelená
    gulicky V nádobe je 45 bielych a 15 zelených guličiek. Náhodne vyberieme 5 guličiek. Aká je pravdepodobnosť, že bude maximálne jedna zelená?
  14. Generálny riaditeľ
    normal_dist Výpočtom rozhodnite koľko kandidátov z celkového počtu 1000 kandidátov na funkciu generálneho riaditeľa plní požiadavky spôsobilosti na žiaducemu výkone tejto top manažérske funkcie s aspoň 67% pravdepodobnosťou - samozrejme za predpokladu, že spôsobilosť.
  15. V triede 10
    skola V triede je dnes 9 dievčat a 11 chlapcov. Aká je pravdepodobnosť, že dnes pôjde k tabuli počítať Ivanka?
  16. 9 členov
    fn Urči prvých osem členov geometrickej postupnosti, ak a9=512, q=2
  17. V krabici
    gulky_7 V krabici je 8 loptičiek, z nich sú 3 nové. Pre prvú hru sa z krabice vyberú náhodne 2 loptičky, ktoré sa po hre vrátia späť ! Pre druhú hru sa opäť náhodne vyberú 2 loptičky, aká je pravdepodobnosť toho že obe už boli použité?