Pri hygienickej

Pri hygienickej kontrole v 2000 zariadeniach spoločného stravovania boli nedostatky zistené v 300 zariadeniach. Aká je pravdepodobnosť, že pri kontrole 10 zariadení budú zistené nedostatky v najviac 3 zariadeniach?

Správny výsledok:

p =  95,003 %

Riešenie:

C0(10)=(100)=10!0!(100)!=11=1 C1(10)=(101)=10!1!(101)!=101=10 C2(10)=(102)=10!2!(102)!=10921=45 C3(10)=(103)=10!3!(103)!=1098321=120 q=3002000=320=0.15 n=10  p0=(n0) q0 (1q)n0=1 0.150 (10.15)1000.1969 p1=(n1) q1 (1q)n1=10 0.151 (10.15)1010.3474 p2=(n2) q2 (1q)n2=45 0.152 (10.15)1020.2759 p3=(n3) q3 (1q)n3=120 0.153 (10.15)1030.1298  p=100 (p0+p1+p2+p3)=100 (0.1969+0.3474+0.2759+0.1298)=95.003%



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby, ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlite. Ďakujeme!





Napíšte nám prosím svoj komentár ku úlohe - postrehy, myšlienku alebo sa niečo opýtajte. Ďakujeme že si takto pomáhame navzájom - žiaci, študenti, učitelia, rodičia a tvorcovia príkladov.

Zobrazujem 0 komentárov:
avatar




Tipy na súvisiace online kalkulačky
Hľadáte štatistickú kalkulačku?
Chceš si dať zrátať kombinačné číslo?

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3

Ďaľšie podobné príklady a úlohy:

  • Pri určitej
    binomial Pri určitej výrobe je pravdepodobnosť výskytu nepodarkov 0,01. Vypočítajte, aká bude pravdepodobnosť, že medzi 100 vybranými výrobkami bude viac ako 1 nepodarok, ak vybrané výrobky po kontrole vrátime späť do súboru.
  • Na základe 2
    probability Na základe predchádzajúcej kontroly je známe, že pri výrobe určitého výrobku sa vyskytujú 3% nepodarkov. a) Vypočítajte pravdepodobnosť javu, že medzi 100 náhodne vybranými výrobkami sú práve 2 nepodarky, pričom každý výrobok po kontrole vrátime do pôvo
  • V krabici
    gulky_7 V krabici je 8 loptičiek, z nich sú 3 nové. Pre prvú hru sa z krabice vyberú náhodne 2 loptičky, ktoré sa po hre vrátia späť ! Pre druhú hru sa opäť náhodne vyberú 2 loptičky, aká je pravdepodobnosť toho že obe už boli použité?
  • Ochorenie
    flu Jedno genetické ochorenie bolo testované pozitívne u oboch rodičov jednej rodiny. Je známe, že každé dieťa v tejto rodine má 25% riziko zdedenia choroby. Rodina má 3 deti. Aká je pravdepodobnosť, že táto rodina bude mať jedno dieťa, ktoré zdedilo toto gen
  • Jedna zelená
    gulicky V nádobe je 45 bielych a 15 zelených guličiek. Náhodne vyberieme 5 guličiek. Aká je pravdepodobnosť, že bude maximálne jedna zelená?
  • Kartári
    cards_4 Hráč dostane 8 kariet z 32. Aká je pravdepodobnosť že dostane a, všetky 4 esá b. aspoň 1 eso
  • Denný 2
    energy Denný výrobok pozostáva z 1000 súčiastok pravdepodobnosť poruchy ľubovoľnej súčiastky v priebehu používania prístroja je 0,001 a nezávisí od ostatných súčiastok. Aká je pravdepodobnosť poruchy dvoch súčiastok v skúmanom období funkčnosti.
  • Lotéria
    lottery Fernando má dva žreby, každý z inej lotérie. V prvej lotérii je 973 000 žrebov a z nich vyhráva 687 000, v druhej lotérii je 1425 000 žrebov a z nich vyhráva 1102 000 žrebov. Aká veľká je pravdepodobnosť, že vyhrá aspoň jeden Fernando-ov žreb?
  • Trieda
    kresba V triede je 60% chlapcov a 40% dievčat. Dlhé vlasy má 10% chlapcov a 80% dievčat. a) Aká je pravdepodobnosť, že náhodne vybraná osoba má dlhé vlasy? b) Vybraná osoba má dlhé vlasy. Aká je pravdepodobnosť, že je to dievča?
  • Trojice
    trojka Koľko rôznych trojíc možno vybrať zo skupiny 38 študentov?
  • V žrebovacej
    losovanie V žrebovacej sťaži sa žrebuje 5 čísel spomedzi 35. Za tri uhádnuté čísla sa vypláca tretia cena. Aká je pravdepodobnosť, že vyhráme tretiu cenu, ak podáme tiket s jednou päticou čísel?
  • Akvárium
    zebra_fish Akvárium v obchode so zvieratkami má 32 zebra rybičiek. Koľkých rôznymi spôsobmi môže Peter vybrať 5 zebra rybičiek?
  • Výpočet KČ
    color_combinations Vypočítajte: ?
  • Medián
    statistics U 11 žiakov bol zaznamenaný počet vymeškaných hodín: 5,12,6,8,10,7,5,110,2,5,6. Určte medián.
  • Genetika
    kvetinky_sestricky1 Vykonal sa experiment, ktorý spočíval v krížení bieleho a fialového hrachu, pričom sa predpokladalo, že pokusné rastliny neboli ešte krížené. Podľa pravidiel dedičnosti možno očakávať, že 3/4 nových potomkov rozkvitne na fialovo a 1/4 na bielo. Vzklíčilo 1
  • Test 5
    test_4 Učitel pripravil test s desiatimi otázkami. Študent má v každej otázke možnosť vybrať jednu správnu odpoveď zo štyroch (A, B,C, D). Študent sa na písomku vôbec nepripravil. Aká je pravdepodobnosť, že: a) Uhádne polovicu odpovedí správne? b) uhádne všet
  • V teste
    binomial_1 V teste je šesť otázok. Ku každej sú ponúknuté 3 odpovede - z nich je iba jedna správna. Na to, aby študent urobil skúšku, treba správne odpovedať aspoň na štyri otázky. Alan sa vôbec neučil, a tak odpovede zakrúžkovával iba hádaním. Aká je pravdepodobnos