Z8-I-6 MO 2017
Přímka představuje číselnou osu a vyznačené body odpovídají číslům a, - a, a + 1, avšak v neurčeném pořadí. Sestrojte body, které odpovídají číslům 0 a 1. Proberte všechny možnosti.
Správná odpověď:

Nejoblíbenější komentáře:

žák
Nemohli by jste sem dát přímo náčrt, jak to vypočítat na té přiložené ose udělat.
4 roky 7 Likes

žák
Nemohli by jste sem dát přímo náčrt, jak to vypočítat na té přiložené ose udělat.
4 roky 7 Likes


Pavel
Potřeboval bych také trošku postrčit. Zadání říká dosadit 0 a 1. Skupina a21 a22 a23 ale představuje dosazení -1, proč? Jak souvisí graf (parabola) s výpočtem a výsledky. Můžete prosím postup trošku okomentovat, děkuji. P.

Dr Math
nic se v zadani nehovori o dosadeni 0 a 1. ale o tom ze 3 cisla a, -a, a+1 maji nadobudat hodnoty 0 a 1






Student
Mohl by to tady někdo pořádně vysvětlit? Nechápu jak zadání, tak výpočet. A proč nemůže být "a" třeba -2?


Student
Myslela jsem, že mi tahle stránka pomůže ale ted tomu nerozumím ještě víc. Jak mám na tu osu sestrojit doby, když mám jen hromadu čísel, která nedávají smysl? Lepší by bylo dát sem přímo tu osu.

Dr Math
pro a=0 jsou to body na ciselne osi 0, 1 , -1
pro a=-1 jsou to body na ciselne osi -1,1,0
pro a=1 jsou to body 1,-1,2 to nevyhovuje protoze v zadani " Sestrojte body, které odpovídají číslům 0 a 1." -> chybi cislo 0.
pro a=-1 jsou to body na ciselne osi -1,1,0
pro a=1 jsou to body 1,-1,2 to nevyhovuje protoze v zadani " Sestrojte body, které odpovídají číslům 0 a 1." -> chybi cislo 0.

Tipy na související online kalkulačky
Základem výpočtů v analytické geometrii je dobrá kalkulačka rovnice přímky, která ze souřadnic dvou bodů v rovině vypočítá smernicový, normálový i parametrický tvar přímky, směrnici, směrový úhel, směrový vektor, délku úsečky, průsečíky se souřadnicovým osami atd.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Téma:
Úroveň složitosti úkolu:
Související a podobné příklady:
- Z9-I-6 MO 2017
Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
- Z8-I-2 MO 2017
V ostroúhlém trojúhelníku KLM má úhel KLM velikost 68°. Bod V je průsečíkem výšek a P je patou výšky na stranu LM. Osa úhlu P V M je rovnoběžná se stranou KM. Porovnejte velikosti úhlů MKL a LMK.
- Trojnožky
Na nově objevené planetě žijí zvířata, která astronauti pojmenovali podle počtu nohou jednonožky, dvojnožky, trojnožky a tak dále (zvířata bez nohou tam nebyla). Zvířata s lichým počtem nohou mají dvě hlavy, zvířata se sudým počtem nohou mají jednu hlavu.
- Z7–I–1 MO 2017
Petr řekl Pavlovi: „Napiš dvojmístné přirozené číslo, které má tu vlastnost, že když od něj odečteš dvojmístné přirozené číslo napsané obráceně, dostaneš rozdíl 63. Které číslo mohl Pavel napsat? Určete všechny možnosti.
- Z9–I–1 2018 čísla
Najděte všechna kladná celá čísla x a y, pro která platí: 1/x + 1/y = 1/4
- MO 2019 Z8–I–4
Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
- Číselna os 2
Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
- Vierka 3 MO Z8
Vierka ze tří daných číslic sestavovala navzájem různá trojmístné čísla. Když všechna tato čísla sečetla, vyšlo jí 1221. Jaké číslice Vierka použila? Určete pět možností
- Z6 – I – 6 MO 2019
Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Mezi tro
- Z9 – I – 6 2018 MO
Přirozené číslo N nazveme bombastické, pokud neobsahuje ve svém zápise žádnou nulu a pokud žádné menší přirozené číslo nemá stejný součin číslic jako číslo N. Karel se nejprve zajímal o bombastická prvočísla a tvrdil, že jich není mnoho. Vypište všechna d
- MO Z8 – I – 4 2018
Na čtyřech kartičkách byly čtyři různé číslice, z nichž jedna byla nula. Vojta z kartiček složil co největší čtyřmístné číslo, Martin pak co nejmenší čtyřmístné číslo. Adam zapsal na tabuli rozdíl Vojtova a Martinova čísla. Potom Vojta z kartiček složil c
- Z6-1-4 MO 2018
Pan Petřík má na zahradě 3 trpaslíky. Největší je Mašík, prostřední Jířa a nejmenší Faltýnek. Když postaví Faltýnka na Jířu jsou stejně vysocí jako Mašík. Když postaví Faltýnka na Mašíka měří o 34 cm více než Jířa. Když postaví na Mašíka Jířu, jsou o 72 c
- MO Z9-I-6 2019
Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly. Jaku
- Otazník
Urči, které číslo patří místo otazníku 25 -? - 205 - 610 -1825
- MO Z6–I–3 2018
Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
- Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
- Bazén
Objem vody v městském bazénu s obdelníkovým dnem je 6998,4 hektolitrů. Propagační leták uvádí, že kdybychom chtěli všechnu vodu z bazénu přelít do pravidelného čtyřbokého hranolu s podstavnou hranou rovnající se průměrné hloubce bazénu, musel by být hrano