Z9-I-6 MO 2017
Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
Správný výsledek:
Správný výsledek:

Zobrazuji 11 komentářů:

Dr Math
skuste za a například tato čísla a dostanete 4 uspořádání .... (jako v příkladu)
a1 = 1
a2 = -5
a3 = -0.75
a4 = -0.25
Totiž číselnou osu dělí zlomové body - D = {-1, -0.5, 0}, cize na 4 casti .... Ine mozne uspořádání není možné dostat. V zlomových bodech dochází k rovnosti bodů ....
a1 = 1
a2 = -5
a3 = -0.75
a4 = -0.25
Totiž číselnou osu dělí zlomové body - D = {-1, -0.5, 0}, cize na 4 casti .... Ine mozne uspořádání není možné dostat. V zlomových bodech dochází k rovnosti bodů ....





Amálie
Není mi jasné zadání, natož řešení. Například co prosím znamená uvázat navzájem různé body? Našel by se někdo kdo by to celé prosím vysvětlil?
3 roky 1 Like



Dr Math
zadání se da vysvetlit tak ze najděte nějaké hodnoty "a" pro ktere jsou tři čísla a, 2a, 3a + 1 spořádaně ve třech různých pořadích .... např. pro a = 1 su ty tři cisla 1,2,4 a su uspořádaně vzestupně. pro a=-5 bude poradi zase jine vid reseni...


K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Další podobné příklady a úkoly:
- Číselna os 2
Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
- Z8-I-6 MO 2017
Přímka představuje číselnou osu a vyznačené body odpovídají číslům a, - a, a + 1, avšak v neurčeném pořadí. Sestrojte body, které odpovídají číslům 0 a 1. Proberte všechny možnosti.
- Číslo dne
Číslo dne je pořadové číslo daného dne v příslušném měsíci (tedy např. číslo dne 5. srpna 2016 je 5). Ciferný součet dne je součet hodnot všech cifer v datu tohoto dne (tedy např. ciferný součet dne 5. srpna 2016 je 5 + 8 + 2 + 0 + 1 + 6 = 22). Šťastný de
- MO Z6-1-3 2017 šachovnica
Veronika má klasickou šachovnici s 8×8 políčky. Řádky jsou označeny číslicemi 1 až 8, sloupce písmeny A až H. Veronika položila na políčko B1 koně, se kterým lze pohybovat pouze tak jako v šachách. 1. Je možné přemístit koně ve čtyřech tazích na políčko H
- Z9 – I – 2 MO 2018
V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.
- C–I–4 MO 2017
Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
- Z9–I–1
Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čís
- Z9–I–1 2018 čísla
Najděte všechna kladná celá čísla x a y, pro která platí: 1/x + 1/y = 1/4
- C – I – 3 MO 2018
Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
- Z6 – I – 6 MO 2019
Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Mezi tro
- Nádoby
Máme nádobu o obsahu 7litru,5litru a 2litry. Největší nádoba je naplněná tekutinou, ostatní jsou prázdné. Dokážeš pouze přeléváním získat 5litru a dvakrát po jednom litru tekutiny? Na kolik přelití to jde?
- Mirek a Zuzka
Obdélník je rozdělený na 7 políček. Na každé políčko se má napsat právě jedno z čísel 1, 2 a 3. Mirek tvrdí, že to lze provést tak, aby součet dvou vedle sebe napsaných čísel byl pokaždé jiný. Zuzka naopak tvrdí, že to možné není. Rozhodněte, kdo z nich m
- MO B 2019 ukol 2
Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
- Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
- Sněhové koule
Adam udělal 25 sněhových koulí. Boris udělal méně sněhových koulí. Kolik sněhových koulí mohl udělat Boris?
- MO C–I–1 2018
Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
- MO Z6–I–3 2018
Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč