Ciferný součet 3

Ciferný součet dvojciferného čísla je 8. Zaměníme-li pořadí číslic, dostaneme číslo o 18 menší než původní číslo. Urči tato čísla. Pomocí lineárních rovnic o dvou neznámých.

Výsledek

a =  53
b =  35

Řešení:


a = x*10 + y
b = y*10+x
x+y = 8
b = a - 18

a-10x-y = 0
b-x-10y = 0
x+y = 8
a-b = 18

a = 53
b = 35
x = 5
y = 3

Vypočtené naším kalkulátorem soustavy lineárních rovnic.
Textové řešení b =







Napište nám komentář ke příkladu a řešení (například pokud je stále něco nejasné ...):

0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




K vyřešení tohoto příkladu jsou potřebné tyto znalosti z matematiky:

Máte soustavu rovnic a hledáte kalkulačku soustavy lineárních rovnic?

Další podobné příklady:

  1. Diktát
    school_3 Diktát psalo celkem 30 žáků. Jedna třetina z nich dostala jedničku nebo čtyřku. Dvojku čtyřikrát více než trojku. Kolik studentů má nedostatečnou, když víme, že jedničku dostalo 7 žáků, což je zároveň stejný počet jako jako součet těch, co mají trojku a č
  2. Cirkus
    cirkus Na cirkusovém představení bylo 150 lidí. Mužů bylo o deset méně než žen a dětí o 50 více než dospělejch. Kolik dětí bylo v cirkuse?
  3. V ovocném 2
    jablone_13 V ovocném sadu bylo o 46 více jabloní než hrušní. Bouře zničila jednu čtvrtinu jabloní a 7 hrušní. Zůstalo 80 stromů. Kolik kterých zbylo?
  4. Třída
    skola_24 V 7. Třídě je o 2 žáky více než v 8. Třídě. Kdyby se počet žáků 7. Třídy zvýšil o 7 a počet žáků 8. Třídy zvýšil o třetinu původního počtu, byl by v obou třídách stejný počet žáků. Kolik žáků je 7. A v 8. Třídě?
  5. Chata
    chata_liptov 30 dětí má v chatě k dispozici třílůžkové a čtyřlůžkové pokoje. Pokoje se obsazují tak, aby byla vždy všechna lůžka obsazena. Určete, kolik pokojů celkem děti obsadí, jestliže ve čtyřlůžkových bude dohromady čtyřikrát více dětí než v třílůžkových?
  6. Branky
    hokej_2 čtyři hokejová mužstva nastřílela v turnaji 337 branek. druhé družstvo dalo o 16 branek méně než první , třetí o 17 méně než druhé a čtvrté o 30 branek méně než druhé . Kolik branek dalo každé mužstvo?
  7. Eliminační metoda
    rovnice_1 Řešte soustavu lineárních rovnic eliminační metodou: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  8. Koruny
    penize_1.JPG Žáci čtyř ročníků uspořili dohromady n=45000 korun. Z toho první ročník uspořil jednu třetinu, druhý jednu třetinu zbytku, třetí dvě pětiny dalšího zbytku a čtvrtý zbývající část. Kolik korun uspořil každý ročník ?
  9. Prací prášky
    rex 200 krabic pracích prášků bylo v obchodě narovnáno ve 3 řadách. V první řadě bylo o 13 krabic víc než ve druhé, ve druhé o jednu pětinu víc než ve třetí řadě. Kolik krabic bylo v jednotlivých řadách?
  10. Vstupenky
    tickets Vstupenky do zoo stojí 4 dolary pro děti, 5 USD pro teenagery, 6 dolarů pro dospělé. V sezóně, 1200 lidí přijde do zoo každý den. V určitý den, celkový příjem v zoo bylo 5300 dolarů. Na každých 3 teenagery 8 dětí prišlo do zoo. Kolik teenegerov (t=?), dět
  11. Nohy
    rak Rak má 5 párů nohou. Hmyz má 6 nohou. 60 tvorů má celkem 500 nohou. Okolik více je raků než hmyzu?
  12. Kino 6
    cinema2_3 Kino navštivilo celkem za 3 dny 890 osob. 2. den to bylo 3x vice než 1. den a 3.den navštivilo kino o 50 osob vice nez 2.den. Kolik osob navštivilo kino v jednotlive dny?
  13. Turiste 2
    hotel_5 Turiste jsou ubytovani ve trech hotelich. V druhem hotelu je ubytovanych o 8 turistu vice nez v prvnim a ve tretim hotelu o 14 vice nez ve druhem. Kolik turistu bydli v kazdem hotelu pokud jich je spolu 258.
  14. Akcionáři a.s.
    vote Na shromáždění akcionářů bylo přítomno 360 osob s hlasovacím právem. Pro určitý návrh bylo o 104 hlasů více než proti. Kolik akcionářů bylo pro návrh a kolik proti?
  15. Lyžařský kurz
    hotel_6 Na lyžařský výcvikový kurz odjede se sedmých tříd základních školy celkem 59 žáků. Na horské chatě budou bydlet ve třílůžkových a čtyřlůžkových pokojích, přičemž kapacita chaty bude zcela naplněna. Na chatě je k ubytování připraveno celkem 17 pokojů. Kter
  16. Soustava rovnic
    linsys Řešte následující soustavu rovnic o třech neznámých 3x+2y+3z=110 5x-y-4z=0 2x-3y+z=0
  17. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?