Příklady na jehlan - strana 13 z 15
Počet nalezených příkladů: 293
- Komolý kužel
Pokud je nádrž zcela plná, nádrž obsahuje 28,54 m³ vody. Průměr horní základny je 3,5 m, zatímco na spodní základně je 2,5 m. Stanovte výšku, pokud je nádrž ve tvaru komolého kužele pravoúhlého kruhového kužele.
- Květinový záhon
Květinový záhon má tvar komolého jehlanu, přičemž hrana dolní podstavy a = 10 m, horní podstavy b = 9 m a odchylka počne hrany od podstavy je alfa = 45°. Jaký objem zemniny je potřebný navýšit na tento záhon? Kolik sazenic je možné vysadit, pokud 1m² = 10
- Jama 3
Jáma má tvar pravidelního čtyřbokého komolého jehlanu. Hrany podstav mají délku 14m a 10m. Boční stěny svírají s menší podstavou úhel o velikosti 135°. Určete kolik m³ zeminy bylov ykopano při hloubení jámy?
- Kulečník
Vrstva slonovinových kulečníkových koulí o poloměru 6,35 cm, je ve tvaru čtverce. Koule jsou uspořádány tak, že každá koule je tangenty (dotýká se) každé sousedící s ní. V prostorech mezi 4 přilehlými koulemi je prostor rovný velikosti originálu kouli. Po
- 2x kužel
Rotační kužel o výšce 55 cm byl rozříznut rovinou rovnoběžnou s podstavou tak, že vznikl menší rotační kužel a komolý rotační kužel. Objem těchto dvou těles je stejný. Určete výšku menšího kužele.
- Seříznutý kužel
Horní a dolní poloměr seříznutého pravého kruhového kužele je 8 cm a 32 cm. Je-li výška seříznutého okraje 10 cm, jak daleko od spodní základny musí být vytvořena rovina řezu, aby se vytvořily dva podobné seříznuté kužele?
- Komolý kruhový kužel
Betonový podstavec má tvar pravoúhlého komolého kruhového kužele s výškou 2,5 metru. Průměr horní a dolní základny je 3 stopy a 5 stop. Určitě boční plochu povrchu, celkovou plochu povrchu a objem podstavce.
- Rozdělit řezem
Daný je kužel s poloměrem podstavy 10 cm a výšce 12 cm. V jaké výšce nad podstavou ho máme rozdělit řezem rovnoběžným s podstavou, aby objemy obou vzniklých teles byly stejné? Výsledek uveďte v cm.
- Jehlan 6
Vypočítej povrch a objem pravidelného čtyřbokého komolého jehlanu : a1= 18 cm , a2=6cm /úhel alfa/α=60° (Úhel α je úhel mezi boční stěnou a rovinou podstavy.) S=? , V=?
- Podstavy
Podstavami pravidelného komolého čtyřbokého jehlanu jsou čtverce. Délky stran se liší o 6 dm. Tělesová výška je 7 dm. Objem tělesa je 1813 dm³. Vypočítejte délky hran obou podstav.
- Seříznutý kužel
Objem seříznutého kužele je V=38000π cm³. Poloměr dolní podstavy je o 10 cm větší, než poloměr horní podstavy. Určete poloměr podstav, pokud výška v=60 cm.
- Jáma - jehlanova
Jáma má tvar pravidelného seříznutého 4-bokého jehlanu, jejichž podstavné hrany mají velikosti 14m, 10m a hloubka je 6m. Vypočítejte, kolik m³ zeminy bylo při vyhloubení této jámy vyvezeno.
- Michaela
Michaela má ve své sbírce dvě vázy. První váza má tvar kužele s průměrem podstavy d = 20 cm; druhá váza má tvar komolého kužele s průměrem spodní podstavy d1 = 25 cm a s průměrem horní podstavy d2 = 15 cm. Do které vázy se vejde více vody, pokud výška obo
- Povrch 32
Povrch rotačního kužele a obsah jeho podstavy jsou v poměru 18:5. Určete objem kužele, je-li jeho tělesná výška 12 cm.
- Nepodráždil obojek
Alžbětinský obojek se používá k tomu, aby si zvíře nepodráždilo ránu. Úhel mezi otvorem (průměr 6 palců) a koncem (o průměru 16 palců) svírá se stranou límce úhel 53 stupňů. Najděte uvedenou plochu límce.
- Strana kužele
Vyjádřete povrch a objem seříznutého kužele pomocí jeho strany s, pokud pro poloměry postav r1 a r2 platí: r1 > r2, r2 = s a pokud odchylka strany od roviny podstavy je 60°.
- Je dán 21
Je dán pravidelný čtyřboký jehlan s délkou podstavné hrany a=15cm a výškou v=21cm. Rovnoběžně s podstavou vedeme dvě roviny tak, že rozdělil výšku jehlanu na tři stejné části. Vypočítej poměr objemů vzniklých 3 těles.
- Komolý jehlan
Vypočítejte objem pravidelného 4-bokeho komolého jehlanu, jestliže a1 = 14 cm, a2 = 8 cm a úhel, který svírá boční stěna s podstavou je 42 stupňů.
- Komolý jehlan 4
Betonový podstavec tvaru pravidelného čtyřbokého komolého jehlanu má výšku 12 cm, hrany podstavy mají délky 2,4 a 1,6 dm. Vypočítej povrch podstavce.
- Povrch
Povrch komolého rotačního kužele se stranou s = 13 cm je S = 510π cm². Urči poloměry podstav, když je rozdíl délek je 10cm.
Máš příklad z matematiky, který jsi tady nenašel vyřešený? Pošli nám tenhle příklad a my Ti ho zkusíme vypočítat.