2x kužel
Rotační kužel o výšce 55 cm byl rozříznut rovinou rovnoběžnou s podstavou tak, že vznikl menší rotační kužel a komolý rotační kužel. Objem těchto dvou těles je stejný. Určete výšku menšího kužele.
Správná odpověď:

Tipy na související online kalkulačky
Vyzkoušejte naši kalkulačka na přepočet poměru.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
algebraaritmetikastereometriezákladní operace a pojmyčíslaJednotky fyzikálních veličinÚroveň náročnosti úkolu
Související a podobné příklady:
- Kužel
Rotační kužel o výšce 19 cm a objemu 2148 cm³ je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu.
- Kužel
Rotační kužel s výškou h = 19 dm a poloměrem podstavy r = 5 dm rozřízneme rovinou rovnoběžnou s podstavou. Určitě vzdálenost vrcholu kužele od této roviny, jestliže vzniklé tělesa mají stejný objem.
- Vzdálenosti 9911
Objem pravého kruhového kužele je 5 litrů. Vypočítejte objem dvou částí, na které je kužel rozdělen rovinou rovnoběžnou se základnou, v jedné třetině vzdálenosti od vrcholu k základně.
- Velký kužel
Seříznutý rotační kužel má podstavy s poloměry r1 = 8 cm, r2 = 4 cm a výšku v = 5 cm. Jaký je objem kužele, ze kterého komolý kužel vznikl?
- Rotační telesa
Rotační kužel a rotační válec mají stejný objem 180 cm³ a stejnou výšku v=15cm. Které z těchto dvou těles má větší povrch?
- Na dvě části
Pravidelný jehlan se čtvercovou podstavou rozřízneme rovinou rovnoběžnou s podstavou na dvě části (viz obrázek). Objem vzniklého menšího jehlanu tvoří 20% objemu původního jehlanu. Podstava vzniklého menšího jehlanu má obsah 10 cm². Určete v centimetrech
- Komolý kužel
Kužel s poloměrem podstavy 12 cm a výškou 20 cm byl ve vzdálenosti 6 cm od podstavy seříznutý, čímž vznikl komolý kužel. Zjistěte poloměr podstavy komolého kužele.