Kužel
Rotační kužel o výšce 19 cm a objemu 2148 cm3 je ve třetině výšky (měřeno zespoda) rozříznut rovinou rovnoběžnou s podstavou. Určete poloměr a obvod kruhovéh řezu.
Správná odpověď:

Tipy na související online kalkulačky
Chcete proměnit jednotku délky?
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
geometriealgebraaritmetikastereometrieplanimetrieJednotky fyzikálních veličinÚroveň náročnosti úkolu
Související a podobné příklady:
- 2x kužel
Rotační kužel o výšce 55 cm byl rozříznut rovinou rovnoběžnou s podstavou tak, že vznikl menší rotační kužel a komolý rotační kužel. Objem těchto dvou těles je stejný. Určete výšku menšího kužele.
- Kužel
Rotační kužel s výškou h = 15 dm a poloměrem podstavy r = 2 dm rozřízneme rovinou rovnoběžnou s podstavou. Určitě vzdálenost vrcholu kužele od této roviny, jestliže vzniklé tělesa mají stejný objem.
- Vzdálenosti 9911
Objem pravého kruhového kužele je 5 litrů. Vypočítejte objem dvou částí, na které je kužel rozdělen rovinou rovnoběžnou se základnou, v jedné třetině vzdálenosti od vrcholu k základně.
- Trojúhelníkem 3493
V axometrii sestrojte průmět šikmého kruhového kužele s podstavou v rovině. Dimetrie je dána stopným trojúhelníkem, známe střed podstavy S, poloměr podstavy ra vrchol kužele V, Trojúhelník (6,7,6), S (2,0,4), V(-2,7,6), r=3 cm .
- Do rotačního
Do rotačního kužele je vepsán válec, jehož výska je rovna polovině výšky kužele. Určete poměr objemů obou těles.
- Na dvě části
Pravidelný jehlan se čtvercovou podstavou rozřízneme rovinou rovnoběžnou s podstavou na dvě části (viz obrázek). Objem vzniklého menšího jehlanu tvoří 20% objemu původního jehlanu. Podstava vzniklého menšího jehlanu má obsah 10 cm². Určete v centimetrech
- Rotační kužel
Objem rotačního kužele je 733 cm³ a strana kužele svírá s rovinou podstavy úhel 75°. Vypočítejte obsah pláště rotačního kužele.