Příklady na trojúhelník - strana 25 z 124
Počet nalezených příkladů: 2477
- Kvádr
Kvádr ABCDEFGH o výšce 10 cm má podstavné hrany délky 6 cm a 8 cm. Určete odchylku tělesové úhlopříčky od roviny podstavy (zaokrouhlete na stupně) - Rovnoramenného 63344
Vypočítejte objem kužele, který vznikne rotací rovnoramenného trojúhelníku kolem výšky na základnu, pokud trojúhelník má rameno dlouhé 15 cm a výšku na základnu 12 cm. Při výpočtu použijte hodnotu pi = 3,14 a výsledek zaokrouhlete na jedno desetinné místo - Horizontální 72204
Turista plánuje túru na jednu stranu hory a dolů na druhé straně vrcholu hory, přičemž každá strana hory je tvořena přímkou. Úhel elevace v počátečním bodě je 42,4 stupně a úhel elevace na konci je 48,3 stupně_ Horizontální vzdálenost mezi počátečním a ko - Velký kužel
Seříznutý rotační kužel má podstavy s poloměry r1 = 8 cm, r2 = 4 cm a výšku v = 5 cm. Jaký je objem kužele, ze kterého komolý kužel vznikl? - Vzdálenosti 9911
Objem pravého kruhového kužele je 5 litrů. Vypočítejte objem dvou částí, na které je kužel rozdělen rovinou rovnoběžnou se základnou, v jedné třetině vzdálenosti od vrcholu k základně. - Pravidelný trojboký
Pravidelný trojboký hranol, jehož hrany jsou shodné, má povrch 2514 cm² (čtverečních). Urči objem tohoto tělesa v cm³ (l). - Motorový člun
Motorový člun se pohybuje vzhledem k vodě stálou rychlostí 13 m/s. Rychlost vodního proudu v řece je 5 m/s a) Pod jakým úhlem vzhledem k vodnímu proudu musí člun plout, aby se stále pohyboval kolmo ke břehům řeky? b) Jak velkou rychlostí se přibližuje člu - Těžnice
Vypočítejte strany pravouhlého trojuholníka, pokud délky těžnic na odvesny sú ta = 30 cm a tb = 10 cm. - Vypočítej 70744
Vypočítej objem a povrch rotačního kužele, pokud jeho výška je 10 cm a strana má od roviny podstavy odchylku 30°. - Schodiště - eskalátor
Pohyblivé schodiště se pohybuje rychlostí velikosti 0,6 m/s směrem dolů. Schodiště svírá s vodorovnou rovinou úhel 45°. Člověk o hmotnosti 80 kg kráčí po schodišti směrem vzhůru rychlostí velikosti 0,9 m/s. Určete dráhu, kterou člověk projde a práci, kter - Dvě silnice
Dvě silnice spolu svírají pravý úhel. Na jedné silnici je 5km od křižovatky místo P, na druhé silnici je 12km od křižovatky místo R. Místa P a R jsou spojena přímou pěšinou. Chodec jde z místa R do místa P pěšinou průměrnou rychlostí 5km/h, auto jede z mí - V pravoúhlém 8
V pravoúhlém trojúhelníku ABC (AB je přepona) platí a : b = 24 : 7 a výška na stranu c = 12,6 cm. Vypočítejte délky stran trojúhelníku ABC. - Těleso
Těleso se klouže dolů po nakloněné rovině svírající s vodorovnou rovinou úhel α = π / 4 = 45° za účinku sil tření se zrychlením a = 2,4 m/s². Pod jakým úhlem β musí být nakloněná rovina, aby se těleso po ní klouzaly po malém postrčení konstantní rychlostí - Vzdálenosti 6653
Dvě přímé cesty se křižují a svírají úhel alfa = 53 stupňů 30'. Na jedné z nich stojí dva sloupy, jeden na křižovatce, druhý ve vzdálenosti 500m od ní. Jak daleko je třeba jít od křižovatky po druhé cestě, abychom viděli oba sloupy v zorném úhlu beta? a) - Řeka
Vypočítejte o kolik promile průměrně klesá řeka Dunaj, pokud na úseku dlouhém 368 km teče voda z výšky 1358 m nad mořem na výšku 185 m nad mořem. - Výška = hrana
V pravidelném čtyřboký jehlanu se výška boční stěny rovná délce hrany podstavy. Obsah boční stěny je 32 cm². Jaký je povrch jehlanu? - Pravoúhlý trojúhelník
Pro odvěsny pravoúhlého trojúhelníku platí a:b = 7:8. Přepona má délku 88 cm. Vypočítejte obvod a obsah tohoto trojúhelníku. - V rovině 2
V rovině je umístěn trojúhelník ABC s pravým úhlem u vrcholu C, pro který platí: A(1, 2), B(5, 2), C(x, x+1), kde x > -1. a) určete hodnotu x b) určete souřadnice bodu M, který je středem úsečky AB c) dokažte že vektory AB a CM jsou kolmé d) určete vel - Parašutista
Po otevření padáku klesá výsadkář k zemi stálou rychlostí 2 m/s, přičemž ho unáší boční vítr stálou rychlostí 1,5 m/s. Určete: a) velikost jeho výsledné rychlosti vzhledem k zemi, b) vzdálenost místa jeho dopadu od osamělého stromu, nad nímž se nacházel v - Dvaja
Dvě přímé čáry kříží v pravém úhlu. Dva lidé začínají současně v místě křižovatky. John jde rychlostí 4 km/h po jedné cestě a Peter jede rychlostí 8 km/h po druhé cestě. Jak dlouho bude trvat, než budou vzdálený 20√5 km od sebe?
Máš příklad z matematiky, který jsi tady nenašel vyřešený? Pošli nám příklad a my Ti ho zkusíme vypočítat.
