V rovině 2
V rovině je umístěn trojúhelník ABC s pravým úhlem u vrcholu C, pro který platí: A(1, 2), B(5, 2), C(x, x+1), kde x > -1.
a) určete hodnotu x
b) určete souřadnice bodu M, který je středem úsečky AB
c) dokažte že vektory AB a CM jsou kolmé
d) určete velikost úhlu CAB
e) spočítejte obvod trojúhelníku ABC
a) určete hodnotu x
b) určete souřadnice bodu M, který je středem úsečky AB
c) dokažte že vektory AB a CM jsou kolmé
d) určete velikost úhlu CAB
e) spočítejte obvod trojúhelníku ABC
Správná odpověď:

Tipy na související online kalkulačky
Hledáte pomoc s výpočtem kořenů kvadratické rovnice?
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
- geometrie
- analytická geometrie
- skalární součin
- algebra
- kvadratická rovnice
- rovnice
- planimetrie
- Pythagorova věta
- pravoúhlý trojúhelník
- trojúhelník
- goniometrie a trigonometrie
- sinus
- arkussinus
Jednotky fyzikálních veličin:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Trojúhelník
V trojúhelníku ABC se stranou BC délky 2 cm je bod K středem strany AB. Body L a M rozdělují stranu AC na tři shodné úsečky. Trojúhelník KLM je rovnoramenný s pravým úhlem u vrcholu K. Určete délky stran AB, AC trojúhelníku ABC.
- Trojúhelník PRT
V rovnoramenném pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C platí o souradnicích bodů: A (-1 , 2); C (-5 , -2) Vypočtěte délku strany AB.
- V pravoúhlém
V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C známe délky stran AC = 9 cm a BC = 7 cm. Vypočítejte délku poslední strany trojúhelníku a velikost všech úhlů.
- Trojúhelníku 4434
Pata výšky z vrcholu C v trojúhelníku ABC dělí stranu AB v poměru 1:2. Dokažte, že při obvyklém označení délek stran trojúhelníku ABC platí nerovnost 3|a-b| < c.
- Pravoúhly trojúhelník 9
V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C je dáno : a=17cm, Vc=8 cm. Vypočítejte délku stran b, c, jeho obsah S, obvod o, délku poloměrů kružnic trojúhelníku opsané R a vepsané r a velikost úhlů alfa a beta.
- Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Vypočítejte: 8172
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (6t²+ 4t ; 3t + 1) kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době t = 2s
- Těžiště
V trojúhelníku ABC leží bod D[1,-2,6], který je středem strany |BC| a bod G, který je těžištěm trojúhelníku G[8,1,-3]. Najděte souřadnice vrcholu A[x,y,z].
- Trojúhelníku 81737
V trojúhelníku ABC určete souřadnice bodu B, pokud víte, že body A, B leží na přímce 3x-y-5=0, body A, C leží na přímce 2x+3y+4=0, bod C leží na souřadnicové ose x a úhel u vrcholu C je pravý.
- Vypočítejte: 8173
Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t2; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného b
- Trojúhelník ABC
Mějme pravoúhlý trojúhelník ABC s pravým úhlem při vrcholu C, |BC| = 18, |AB| = 33. Vypočítejte výšku vAB trojúhelníku na stranu AB.
- Lichoběžník MO
Je dán pravouhlý lichoběžník ABCD s pravým uhlem u bodu B, |AC| = 12, |CD| = 8, uhlopříčky jsou na sebe kolmé. Vypočítejte obvod a obsah takéhoto lichobežníka.
- Odvěsny
V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C známe délku strany AB = 24 cm a úhel při vrcholu B = 71°. Vypočítejte délku odvěsen trojúhelníku.
- Euklid2
V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C je dána odvěsna a=26 a výška v=18. Určete obvod trojúhelníka.
- Rovnoramenný lichoběžník
Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikost
- Je dán 15
Je dán koncový bod vektoru, který je umístěn v počátku kartézské soustavy Oxy. Určete souřadnice vektoru, jeho velikost a načrtněte jej: P[3,4] ; Q[-2,7] ; S[-5,-2] . .. tj. Vektory PO, QO, SO
- Euklid bez euklida
Mějme pravoúhlý trojúhelník ABC s pravým úhlem při vrcholu C, a = 10, c = 18. Vypočítejte výšku v trojúhelníku na stranu AB bez použití Euklidových vět.