Pravidelný trojboký
Pravidelný trojboký hranol, jehož hrany jsou shodné, má povrch 2514 cm2 (čtverečních). Urči objem tohoto tělesa v cm3 (l).
Správná odpověď:

Tipy na související online kalkulačky
Tip: Převody jednotky objemu vám pomůže naše kalkulačka pro převody jednotek objemu.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
algebrastereometrieplanimetrieJednotky fyzikálních veličinÚroveň náročnosti úkolu
Související a podobné příklady:
- Trojboký hranol
Pravidelný trojboký hranol je vysoký 7 cm. Jeho podstava je rovnostranný trojúhelník, jehož výška je 3 cm. Vypočítejte povrch a objem tohoto hranolu.
- Čtyřstěn 3
Pravidelný čtyřstěn je trojboký jehlan, jehož podstava a stěny jsou shodné rovnostranné trojúhelníky. Vypočítejte výšku tohoto tělesa, je-li délka hrany a = 8 cm
- Trojboký hranol 16
Vypočítejte povrch pravidelného trojbokého hranolu, jehož hrany podstavy mají délku 6 cm a výška hranolu je 15 cm .
- Povrch a objem
Vypočítejte povrch a objem válce jehož výška je 8 dm a poloměr kružnice podstavy je 2 dm
- Osmistěn
Všechny stěny pravidelného osmistěn jsou shodně rovnostranné trojúhelníky. Hrany osmistěnu ABCDEF mají délku d = 6 cm. Vypočtěte povrch a objem tohoto osmistěnu.
- Trojboký hranol
Vypočítejte objem a povrch hranolu, jehož výška je 16cm a podstava má tvar pravoúhlého trojúhelníku s odvěsnami 5cm a 12cm a přeponou 13cm.
- Pravidelný 11
Pravidelný trojboký jehlan ABCDV má délku podstavné hrany a=8 cm a výšku 7 cm. Vypočítej povrch a objem jehlanu