Úvaha + kvadratická rovnice - příklady a úlohy

Počet nalezených příkladů: 48

  • Pagáče
    rohliky Jano s Mišom jedli pagáče. Jano snědl o 3 více než Mišo. Součin jejich počtů (čísel) je 180. Kolik pagáčů snědl každý z nich?
  • Kedlubny
    kalerab Cena jednoho kedlubny vzrostla o 0,40 €. Počet kedluben, které může zákazník koupit za 4 €, tak klesl o 5. Zjistěte v eurech novou cenu jednoho kedlubny.
  • Pravoúhlý 30
    rt_triangle_1 Pravoúhlý trojúhelník s celočíselnou délkou dvou stran má odvěsnu dlouhou √11. Kolik měří jeho nejdelší strana?
  • Rozhledna
    tower Jak vysoká je rozhledna? Kdyby byl každý schod o 3 cm nižší, bylo by je na rozhlednu o 60 více. Kdyby byl zase o 3 cm vyšší, bylo by je o 40 méně, než jich je nyní.
  • Ve dvojciferném
    numbers_2 Ve dvojciferném čísle je počet desítek o tři větší než počet jednotek. Jestliže původní číslo násobíme číslem napsaným týmiž číslicemi, ale v obráceném pořadí, dostaneme součin 3 478. Určete původní číslo.
  • Turista 9
    eq2 Turista chtěl ujít trasu 16 km za určitý čas. Vyšel proto potřebnou stálou rychlostí. Po 4 km chůze však spadl neplánovaně do jezírka, kde se málem utopil. Trvalo mu 20 minut, než se vydrápal na břeh a vzpamatoval z té hrůzy. Aby došel do cíle včas, musel
  • Kvíz
    test_1 V soutěži odpovídá 10 soutěžících na pět otázek, v každém kole na jednu otázku. Kdo odpoví správně, získá v daném kole tolik bodů, kolik soutěžících odpovědělo nesprávné. Jedna ze soutěžících po soutěži řekla: Celkově jsme získali 116 bodů, z toho já 30
  • Výška trojúhelníku
    rs_triangle Vrcholy rovnostranného trojúhelníku leží na 3 různých rovnoběžkách. Prostřední je od krajních vzdálena 5 m, resp. 3 m. Vypočítejte výšku tohoto trojúhelníku.
  • Záhon
    circles Kruhový záhon zvětšily tak, že se jeho poloměr zvětšil o 3 m. Spotřeba substrátu na zvětšený záhon byla (při stejné výšce vrstvy jako před zvětšením) devětkrát větší než předtím. Určete původní poloměr záhonu.
  • Obchodník 5
    percent Obchodník dal ráno do své výlohy k vystavenému páru bot cedulku: "Dnes o p% levnější než včera. " Další ráno přelepil číslo p číslem dvakrát větším. Po chvíli však usoudil, že účinnější bude cedulka s nápisem: "Dnes o 62,5% levnější než předevčírem. Určet
  • MO 2019 Z8–I–4
    olympics_1 Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  • Dvě písařky 2
    books_37 Dvě písařky napsaly dohromady 65 stránek; i když první psala o hodinu déle než druhá, napsala o 5 str. Méně; druhá píše za hodinu o 2 strany více než první. kolik str. Napíšou obě dohromady?
  • Za jakou dobu
    roura_1 Za jakou dobu se naplní bazén dvojím přívodním potrubím, jestliže trvá naplnění bazénu prvním potrubím o 4 hodiny déle a druhým potrubím o 9 hodin déle než obojím potrubím současně.
  • Jízdní řád
    trains_13 Mezinárodní rychlík jel z Košic do Teplic. Na prvních 279 km se opravovala trať a proto se pohyboval rychlostí o 10km/h menší než měl jet podle jízdního řádu. Zbytek cesty v délce 465 km zvýšil rychlost o 8 km/h než byla rychlost podle jízdního řádu. Do T
  • MO Z8-I-1 2018
    age_6 Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
  • Obdélníky
    rectangles2_2 Vystřihl jsem si dva obdélníky s obsahy 54 cm², 90 cm². Jejich strany jsou vyjádřené celými čísly v centimetrech. Pokud tyto obdélníky přiložím k sobě, dostanu obdélník s obsahem 144 cm². Jaké rozměry může mít tento velký obdélník? Napiš všechny možnosti.
  • Kružnice
    two_circles_1 Dokažte, že rovnice k1 a k2 představují kružnice. Napište rovnici přímky, která prochází středy těchto kružnic. k1: x2+y2+2x+4y+1=0 k2: x2+y2-8x+6y+9=0
  • Délky stran a úhly
    rt_triangle_1 Vypočtěte délky stran a úhly v pravoúhlém trojúhelníku. S = 210, o = 70.
  • Otec Eduard
    tourists_7 Otec Eduard z místa A a syn Jaroslav z místa B vyrazí najednou proti sobě. Rychlejší je otec a pomalejší syn. Potkají se ve 12 hodin a pokračují dále po trase svého "protichůdce". Rychlejší otec dojde do protilehlého místa B v 16 hodin. Pomalejší syn až v
  • Matematik
    age_1 Jeden mladý matematik se opět nudil. Zjistil že průměrný věk lidí v místnosti, ve které se konal seminář, je roven jejich počtu. Potom do této místnosti vešel jeho 29-letý bratr. I pak platilo že průměrný věk všech přítomných byl roven jejich počtu. Kolik

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Hledáte pomoc s výpočtem kořenů kvadratické rovnice?