Príklady na trojuholník - strana 63 z 124
Počet nájdených príkladov: 2461
- Pravouhlý lichobežník
Vypočítaj obsah pravouhlého lichobežníka ABCD s pravým uhlom pri vrchole A, ak |AC|=4cm, |BC|=3cm a uhlopriečka AC je kolmá na rameno BC.
- Rotácia
Pravouhlý trojuholník má strany a = 11 a b = 10. Prepona je c. Ak sa trojuholník otáča okolo strany c ako os, nájdite objem a plochu povrchu kužeľovej plochy vytvorenej touto rotáciou.
- V pravidelnom 5
V pravidelnom trojbokom ihlane ABCV je odchýlka bočnej steny a roviny podstavy α = 45°. Určite odchýlku bočnej hrany a roviny podstavy.
- Obsah Š.T.
Je daný štvorec RDMQ, pričom |DM|=20. Vypočítajte obsah trojuholníka RQA, kde vrchol A leží na priamke MD.
- Plášť hexa-ihlanu
Určte obsah plášťa pravidelného šesťbokého ihlanu, viete ak že jeho podstavná hrana má dĺžku 5cm a výška tohto ihlanu je 10cm.
- Štvorboký ihlan
Máme pravidelný štvorboký ihlan s podstavnou hranou a = 10 cm a výškou v = 7cm. Vypočítajte 1/obsah podstavy 2/obsah plášťa 3/povrch ihlanu 4/objem ihlanu
- Pomer uhlopriečok
Dĺžky hrán kvádra sú v pomere 1 : 2 : 3. Budú v takom istom pomere aj dĺžky jeho stenových uhlopriečok? Kváder má rozmery 5 cm, 10 cm a 15 cm. Vypočítaj veľkosť stenových uhlopriečok tohto kvádra.
- Rotačný kužeľ
Obsah plášta rotačného kužeľa je 240 cm² a obsah jeho podstavy 160 cm². Vypočítaj objem tohto kužeľa.
- Kúžeľ
Vypočítaj objem a povrch kužeľa, ak priemer podstavy je d=21 cm a strana kužeľa zviera s rovinou podstavy uhol 64°24'.
- Strešna krytina
Koľko m² strešnej krytiny je potreba na pokrytie strechy tvare kužeľa s priemerom 10 m a výškou 4 m? Na presahy počítaj 4% navyše.
- Opäť telesová uhlopriečka
Vypočítajte povrch kvádra, ak je daný súčet veľkostí jeho hrán a + b + c = 19 cm a veľkosť telesovej uhlopriečky u = 13 cm.
- Strecha 8
Nad pavilónom štvorcového pôdorysu so stranou a = 12 m je strecha tvaru ihlana s výškou 4,5 m. Koľko m² plechu treba na zakrytie tejto strechy?
- Telesová uhlopriečka
Vypočítajte objem kocky, ktorej telesová uhlopriečka má veľkosť 75 dm. Načrtnite si obrázok a telesovú uhlopriečku farebne zvýraznite.
- Najdlhšia tyč
Debna na náradie má vnútorné rozmery dĺžku 1,5 metra šírky 80 cm a výšku 6 dm. Vypočítaj, akú najdlhšiu tyč môžeme do tejto debny schovať.
- Kufor - tyč
Batožinový priestor v aute má tvar kvádra s hranami 1,6m x 1,2m x 0,5m (šírka, hĺbka, výška). Urči akú najdlhšiu tenkú tyč môžeme položiť na dno.
- RRT hranol
Podstava kolmého hranola je rovnoramenný trojuholník, ktorého základňa je 10 cm a rameno 13 cm. Výška hranola je trojnásobok výšky podstavného trojuholníka na jeho základňu. Vypočítajte povrch hranola.
- Trojboký 11
Trojboký hranol má podstavu tvaru pravouhlého trojuholníka s dĺžkou odvesny 5 cm. Najväčšia stena plášťa hranola má obsah 104 cm². Hranol je vysoký 8 cm. Vypočítaj objem a povrch hranola.
- Štvorboký ihlan
Pravidelný štvorboký ihlan má obvod podstavy 44cm a telesovú výšku 3,2 dm. Vypočítajte jeho objem a povrch.
- V kocke
V kocke s dĺžkou hrany 12 dm máme vpísaný ihlan s vrcholom v strede hornej steny kocky. Vypočítajte objem a povrch tohto ihlanu.
- Dve gule
Dve gule, jedna s polomerom 8 cm a ďalšia s polomerom 6 cm, sa vloži do valcovej plastovej nádoby s polomerom 10 cm. Nájdite množstvo vody potrebnej na ich potopenie.
Máš príklad, nad ktorým si premýšľaš aspoň 10 minút? Pošli nám príklad a my Ti ho skúsime vypočítať.
Pozrite aj našu trigonometrickú trojuholníkovu kalkulačku. Pozrite tiež informácií viac na Wikipédií.