Půlkruh

V půlkruhu se středem S a průměrem AB je sestrojen rovnostranný trojúhelník SBC. Jaká je velikost úhlu ∠ SAC?

Správný výsledek:

|∠SAC| =  30 °

Řešení:

|∠SAC|=90-60=30 ^\circ



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 2 komentáře:
#
47
Jak jste prisli na vysledek?

#
Petr
Opat jednuducho - staci si nakreslit body A, B , S , polkruh. Bod C lezi na polkruznici a v strojuhelniku ABC je pri vrchole C pravy uhol (Thaletova veta). Uhol ABC je 60 stupnu a teda vysledok SAC = BAC = 180-90-60=30

avatar









Tipy na související online kalkulačky
Vyzkoušejte také naši kalkulačku pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • Tětiva
    Tetiva Strana trojúhelníku vepsaného do kružnice je tětivou procházející jejím středem. Jakou velikost mají vnitřní úhly trojúhelníku, pokud jeden z nich má 40°?
  • Z7-I-5 MO 2017
    triangle_1111_6 Prokop zostrojil trojuholník ABC, ktorého vnútorný uhol pri vrchole A bol väčší ako 60° a vnútorný uhol pri vrchole B bol menší ako 60°. Juraj narysoval v polrovine určenej priamkou AB a bodom C bod D, a to tak, že trojuholník ABD bol rovnostranný. Potom
  • Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek
  • 30-60-90
    30-60-90 Nejdelší strana trojúhelníku s úhly 30°-60°-90° měří 5. Jaká je délka nejkratší strany?
  • Z8-I-2 MO 2017
    klm1 V ostroúhlém trojúhelníku KLM má úhel KLM velikost 68°. Bod V je průsečíkem výšek a P je patou výšky na stranu LM. Osa úhlu P V M je rovnoběžná se stranou KM. Porovnejte velikosti úhlů MKL a LMK.
  • Rovnoramenný lichoběžník
    mo-klm Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikost
  • Úplná konstrukce
    thalet Sestrojte trojúhelník ABC, přepona c = 7 cm, úhel ABC=30 stupňů. /Použijte Thaletovu kružnici/. Změřte a napište délku odvěsen.
  • Z7-1-6 MO 2018
    iso_rt Je dán rovnoramenný pravoúhlý trojúhelník ABS se základnou AB. Na kružnici, která má střed v bodě S a prochází body A a B, leží bod C tak, že trojúhelník ABC je rovnoramenný. Určete, kolik bodů C vyhovuje uvedeným podmínkám, a všechny takové body sestrojt
  • Obvod trojúhelníku
    rt_triangle_1 Velikost úhlu A je 60° velikost úhlu B je 90° velikost strany c je 15 cm. Vypočtěte obvod trojúhelníku.
  • Trojúhelník KLB
    rovnostranny_trojuholnik Je dán rovnostranný trojúhelník ABC. Z bodu L který je středem strany BC tohoto trojúhelníku, je spuštěna kolmice k na stranu AB. Průsečík kolmice k a strany AB je označen jako bod K. Kolik % z obsahu trojúhelníku ABC tvoří trojúhelník KLB?
  • Tětiva BC
    tetiva2 Je dána kružnice k se středem v bodě S = [0; 0]. Bod A = [40; 30] leží na kružnici k. Jak dlouhá je tětiva BC pokud střed P této tětivy má souřadnice: [- 14; 0]?
  • Funkce sinus, kosinus
    triangle2 Vypočítej velikosti zbývajících stran a úhlů pravoúhlého trojúhelníku ABC, jestliže je dáno: b=10cm; c=20cm; úhel alfa= 60° a úhel beta= 30° (použij Pytagorovu větu a funkce sinus, kosinus, tangens, kotangens)
  • Sestroj OP
    tecna Je dána kružnice k (S; 2,5 cm) a vnější přímka p. Sestroj tečnu t této kružnice, která s přímkou p svírá úhel 60°. Kolik řešení ma úkol?
  • Sestroj
    thales_right Sestroj trojúhelník ABC, a = 7 cm, b = 9 cm, pravý úhel u vrcholu C, sestroj osy všech tří stran. Odmerajte a zapíšte délku strany c.
  • Trojúhelník ABC
    triangle_4 V trojúhelníku ABC se velikost vnitřního uhlu gama rovná tretine vnitrniho uhlu alfa. Velikost vnitrniho uhlu beta je o 80 stupňu vetší než velikost uhlu gama. Vypocitej velikosti vnitrnich uhlu trojúhelníku ABC
  • Roční příjmy
    income Roční příjmy (v tisících eur) patnácti rodin jsou: 60, 80, 90, 96, 120, 150, 200, 360, 480, 520, 1060, 1200, 1450, 2500, 7200 Vypočítejte harmonický a geometrický průměr těchto příjmů rodin.
  • Pohyb
    AB Z místa A vyjíždí automobil rychlostí 90km/h. Proti němu vyjíždí z místa B ve stejnou dobu další automobil rychlostí 60km/h. Za jak dlouho a kde se potkají, jestliže vzdálenost míst A a B je 180km?