Maximum + derivace - příklady a úlohy
Počet nalezených příkladů: 22
- Tangens a derivace
Funkce: f(x)=xtanx f(x)=(e^x)/((e^x)+1) Najít; i) vertikální a horizontální asymptoty iii) intervaly poklesu a růstu iii) Místní maxima a místní minima iv) interval konkávnosti a inflexe. A načrtněte graf.
- Na louce
Na louce přistála kosmická loď ve tvaru koule o průměru 6 m. Aby nepoutala pozornost, zakryli ji marťanci střechou ve tvaru pravidelného kužele. Jak vysoká bude tato střecha, aby spotřeba krytiny byla minimální?
- Megapizza
Megapizza bude rozdělena mezi 100 lidí. 1. dostane 1%, 2. 2% ze zbytku, 3. 3% ze zbytku atd. Poslední 100. 100% ze zbytku. Který člověk dostal největší porci?
- Plášť 8
Plášť kužele je vytvořen svinutím kruhové úseče o poloměru 1. Pro jaký středový úhel dané kruhové výseče bude objem vzniklého kužele maximální?
- Střelec 4
Střelec střílí do terče, přičemž předpokládáme, že jednotlivé výstřely jsou navzájem nezávislé a pravděpodobnost zásahu je u každého z nich 0,2. Střelec střílí tak dlouho, dokud poprvé terč nezasáhne, poté střelbu ukončí. (a) Jaký je nejpravděpodobnější p
- Derivační problém
Součet dvou čísel je 12. Najděte tato čísla, jestliže: a) Součet jejich třetích mocnin je minimální. b) Součin jednoho s třetí mocninou druhého je maximální. c) Obě jsou kladná a součin jednoho s druhou mocninou druhého je maximální.
- Simplexova metóda
Řetězec obchodních domů plánuje investovat do televizní reklamy až 24 000 Eur. Všechny reklamní spoty budou umístěny na televizní stanici, na níž odvysílání 30 sekundového spotu stojí 1000 Eur a sleduje ho 14 000 potenciálních zákazníků, během prime týmu
- Tajný poklad
Skauti mají stan ve tvaru pravidelného čtyřbokého jehlanu se stranou podstavy 4 m a výšce 3 m. Do stanu potřebují schovat válcovou nádobu s tajným pokladem. Určete poloměr r (a výšku h) nádoby tak, aby mohli schovat co nejobjemnější poklad.
- Nejlevnější 7976
V rekreační oblasti se má postavit bazén ve tvaru kvádru o objemu 200m³. Jeho délka má být 4-násobkem šířky, přičemž cena 1 m² dna bazénu je 2-krát levnější než 1 m² stěny bazénu. Jaké rozměry musí mít bazén, aby stavba byla nejlevnější?
- Cukrářka 2
Cukrářka potřebuje z cukrářské hmoty ve tvaru koule o poloměru 25cm vyřezat ozdobu ve tvaru kužele. Určete poloměr podstavy ozdoby a (a výšku h) tak, aby se na výrobu ozdoby použilo co nejvíce hmoty.
- Stacionární 6083
Rovnice křivky C je y=2x² -8x+9 a rovnice přímky L je x+ y=3 (1) Najděte x souřadnice průsečíků L a C. (2) Ukažte, že z těchto bodů je také stacionární bod C?
- Nádoba tvaru válce
Nahoru otevřená nádoba tvaru válce má objem V = 3140 cm³. Určitě rozměry válce (r, v) tak, aby na vytvoření této nádoby se minulo nejméně materiálu.
- Žebřík
4m žebřík se dotýká krychle 1mx1m postavené u zdi. Jak vysoko na zdi dosáhne?
- Maximální 4255
Určete rozměry obdélníku s obvodem 24 cm, tak aby jeho povrch byl maximální, a aby platilo, že jeho délka je větší než jeho šířka
- Maximální 4213
Číslo 28 rozložte na dva sčítance tak, aby jejich součin byl maximální.
- Elektronických 4212
Kolik elektronických koloběžek má výrobce prodat, aby maximalizoval svůj příjem, pokud je funkce příjmu dána rovnicí TR(Q) = -4Q2 + 1280 Q + 350?
- Papír
Tvrdý papír ve tvaru obdélníku má rozměry 60 cm a 28 cm. V rozích se odstřihnou stejné čtverce a zbytek se ohne do tvaru otevřené krabice. Jak dlouhá musí být strana odříznutých čtverců, aby objem krabice byl největší?
- Místnost
Je místnost o rozměrech 10x5 metrů. K dispozici máte roli koberce-běhounu o šířce 1 metr. Pravoúhlým řezem uřízenětě z role nejdelší možný kus koberce, který je možné položit do místnosti. Jak dlouhý kus odměříte? Pozn.: Pomůcka - položený koberec nebude
- Kužel
Do rotačního kužele o rozměrech r = 8 cm, v = 8 cm vepište válec maximálního objemu tak, aby osa válce byla kolmá na osu kužele. Určete rozměry válce.
Máš příklad, nad kterým si přemýšlíš alespoň 10 minut? Pošli nám příklad a my Ti ho zkusíme vypočítat.