Příklady na obsah trojúhelníka - strana 30 z 45
Počet nalezených příkladů: 882
- Kruhový bazén
Podstava bazénu má tvar kruhu o poloměru r = 10m kromě kruhového odstavce, který určuje tětiva délky 10m. Jeho hloubka je h = 2m. Kolik hektolitrů vody se vejde do bazénu? - Střecha
Nad pavilonem se čtvercovým půdorysem se stranou délky a = 12 m je střecha tvaru pláště jehlanu s výškou v = 4,5 m. Vypočítejte, kolik m² plechu třeba k zakrytí této střechy, jestliže na spoje a odpad třeba počítat 5,5% plechu. - Součet velikostí hran
Vypočtěte povrch kvádru, je-li dán součet velikostí jeho hran a+b+c=19 cm a velikost tělesové úhlopříčky u=13 cm. - Skleník 2
Skleník má tvar hranolu položeného na boční stěně. Podstavu tvoří lichoběžník a trojúhelník. Dolní základna lichoběžníku má délku 3 m, horní základna (a strana trojúhelníku) má délku 2 m, výška lichoběžníku je 1,8 m a výška trojúhelníku je 0,6 m. Výška hr - Plech 3
Kolik m² pozinkovaného plechu se spotřebuje na pokrytí střechy věže, která má tvat čtyřbokohého jehlanu, jehož podstava hrany má délku 6m. Výška věže je 9m. Při pokrývání se počítá s 5 % odpadem plechu? - Čtyřboký jehlan
Jaký je povrch pravidelného čtyřbokého jehlanu, když je podstavná hrana a=16 a výška v=19? - Krabička
Vypočítejte, kolik zaplatíme za papír na oblepení krabičky tvaru 3-bokého hranolu s podstavou pravoúhlého trojúhelníku, pokud odvěsny měří 12cm a 1,6dm, přepona měří 200mm. Krabička je vysoká 34cm. Za 1dm čtvereční papíru zaplatíme 0,13 €. - Cena střechy
Přístřešek na auto je třeba přikrýt valbovou střechou s obdélníkovým průřezem 8 m x 5 m. Všechny střešní plochy mají stejný sklon 30°. Určete cenu a hmotnost střechy, pokud 1 m² stojí 270 € a váží 43 kg. - Dětský bazénik
Dno dětského bazénku je pravidelný šestiúhelník se stranou a = 60cm. Vzdálenost protilehlých stran je 104cm, výška bazénku je 45cm. A) Kolik litrů vody se vejde do bazénku? B) Bazének je vyroben z dvojité vrstvy plastové fólie. Minimálně kolik m² fólie tř - Kosý hranol
Jaký objem má čtyřboký kosý hranol s podstavnými hranami o délce a=1m, b=1,1m, c=1,2m, d=0,7m, jestliže boční hrana o délce h=3,9m má odchylku od podstavy 20°35´ a hrany a, b svírají úhel 50,5°. - Trojboký hranol
Rovina, která prochází hranou AB a středem hrany CC' pravidelného trojbokého hranolu ABCA'B'C', svírá s podstavou úhel 46 stupňů, |AB| = 12 cm. Vypočítejte objem hranolu. - Plocha plechu na věž
Věž má tvar pravidelného čtyřbokého jehlanu s podstavou hranou 0,8m. Výška věže je 1,2 metru. Kolik metrů čtverečních plechu je třeba na pokrytí počítáme-li osm procent na spoje a překrytí? - V pravidelném 2
V pravidelném čtyřbokem jehlanu je výška 6,5 cm a úhel mezi podstavou a boční stěnou je 42°. Vypočítej povrch a objem tělesa. Výpočty zaokrouhlit na 1 desetinné místo. - Krabička
Kartonová krabička tvaru čtyřbokého hranolu s kosočtvercovou podstavou. Kosočtverec má stranu 5 cm a jednu uhlopříčku 8 cm výška krabičky je 12 cm. Krabička bude nahoře otevřená. Kolik cm² kartonu budeme potřebovat na překrytí a na spoje, které jsou 5% ka - Trojúhelník 45
Trojúhelník má nejkratší stranu a=5cm, prostřední stranu b a nejdelší stranu c=10cm. Čtverec má stranu x=7cm, která je stejně dlouhá jako strana b uvedeného trojúhelníku. Kvádr má výšku 12cm, délku stejnou jako je nejdelší strana trojúhelníku a šířku 8cm. - Povrch hranolů
Ve stavebnici jsou dřevěné hranoly různých tvarů. Jeden je 4-boký s podstavou pravoúhlého lichoběžníku (základně měří 15cm a 27cm), ramena 16cm a 20cm. Druhý byl 3-boky hranol o rozměrech podstavy a=20cm, b=18cm, vb=30cm. Oba hranoly měly výšku 10cm. Stěn - Podstava RR licho
Podstavou hranolu je rovnoramenný lichoběžník ABCD se základnami AB = 12 cm, CD = 9 cm. Úhel při vrcholu B je 48° 10'. Určete objem a porch hranolů, je-li jeho výška 35 cm. - Cena plechu na jehlan
Obvod štvobokého ihlava je 48 m a jeho výška je 2,5 m; kolik bude stát plech na tento jehlan, když 1 m² stojí 1,5 €; do plochy se počítá i 12% ztráta na spoje a záhyby. - Stanové plátno
Stan tvaru jehlanu má podstavu čtverce o velikosti strany 2,2m a výšku 1,8m. Kolik metrů čtverečních stanového plátna je třeba na jeho zhotovení počítáme-li pět procent navíc na založení? - Krabice
Vypočítaj spotřebu papíru na krabici tvaru čtyřbokého hranolu s kosočtvercovou podstavou, podstavná hrana a=6cm, sousedící hrany svírá úhel alfa=60°. výška krabice je 10cm. Kolik m² papíru spotřebujeme na 100 takových krabic?
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.
