Příklady na obsah trojúhelníka - strana 31 z 42
Počet nalezených příkladů: 829
- Natření sloupu
Kolik kg barvy potřebujeme k natření sloupu tvaru pravidelného trojbokého hranolu s hranou podstavy dlouhou 2,5 ma výškou na hranu podstavy 2 m, pokud 1 kg barvy vystačí na 25 m² nátěru? Sloup je vysoký 10m.
- Rovnoramenné těžidlo
Designové těžidlo se vyrábí ze skleněné kostky tak, že se z ní odřízne trojboky hranol s podstavou tvaru rovnoramenného trojúhelníku který je pravoúhlý a jehož rameno má poloviční délku jako hrana kostky. Kolik procent kostky se při výrobě těžila odřízne?
- Vypočítejte 228
Vypočítejte, kolik hl vody se vejde do padesátimetrového zkoseného bazénu, jestliže nejmenší hloubka je 1,2 m a největší hloubka je 3 m, šířka bazénu je 20 m. Dle vypočítejte, kolik kachlíčků tvaru čtverce o délce strany 15 cm je třeba k vykachlíčkování s
- Trojboký hranol
Podstava kolmého trojbokého hranolu je pravoúhlý trojúhelník, jehož přepona je 10cm a jedna odvěsna 8cm. Výška hranolu je 75% z obvodu podstavy. Vypočtěte objem a povrch hranolu.
- Podstava
Podstavu kolmého hranolu tvoří pravoúhlý trojúhelník, jehož odvěsny mají poměr 3:4. Výška hranolu je o 2cm menší, než větší odvěsna. Určitě objem hranolu, pokud jeho povrch je 468 cm².
- Pravidelného 7833
Věž má tvar pravidelného čtyřbokého jehlanu s podstavou hranou 0,8m. Výška věže je 1,2 metru. Kolik metrů čtverečních plechu je třeba na pokrytí počítáme-li osm procent na spoje a překrytí?
- Felix
Vypočítejte jakou část Země Felix Baumgartner viděl při seskoku z výšky 24 km. Poloměr Země je R = 6378 km.
- Vypočítejte
Vypočítejte hmotnost dřevěného pravidelného trojbokého hranolu s výškou rovnající se obvodu podstavy a postavou vepsanou do kružnice o poloměru 6, M cm, kde M je měsíc vašeho narození. Hustota dubu je 680 kg/m³.
- Plášť 8
Plášť kužele je vytvořen svinutím kruhové úseče o poloměru 1. Pro jaký středový úhel dané kruhové výseče bude objem vzniklého kužele maximální?
- Astronaut
Jaké procento zemského povrchu vidí astronaut z výšky h = 350 km. Vezměte Zemi jako kouli s poloměrem R = 6370 km
- V krychli
V krychli ABCDA´B´C´D´ je vedena hranou CC´ rovina tak, že rozdělí krychli na dva kolmé hranoly, čtyřboký a trojboký, jejichž objemy jsou v poměru 3 : 2. Určete v jakém poměru je touto rovinou rozdělena hrana AB.
- Vypočítejte 248
Vypočítejte objem a povrch pravidelného čtyřbokého hranolu o podstavné hraně a=24 cm, jestliže tělesová úhlopříčka svírá s podstavou úhel 66°
- Strana kužele
Vyjádřete povrch a objem seříznutého kužele pomocí jeho strany s, pokud pro poloměry postav r1 a r2 platí: r1 > r2, r2 = s a pokud odchylka strany od roviny podstavy je 60°.
- Slunečník
Slunečník má tvar pláště šestibokého pravidelného jehlanu, jehož podstavná hrana a=6dm a výška v=25cm. Kolik látky je třeba na zhotovení slunečníku, počítáme-li na spoje a odpad 10%.
- Správce hradu
Správce hradu se pokouší odhadnout, kolik čtverečných metrů plechu bude přibližně třeba na novou střechu věže. Střecha má tvar kužele. Správce hradu ví, že průměr věže je 4,6 metru a výška je 5,2 metru. Kolik čtverečných metrů střecha měří?
- Nádrž
Nádrž má tvar pravidelného osmibokého hranolu bez horní podstavy. Podstavná hrana má a = 3m, boční hrana b = 6m. Kolik plechu třeba na zhotovení nádrže? Neberte v úvahu ztráty, ani tloušťku plechu.
- Podstava
Podstavou kvádru je obdélník se stranou 7,5 cm a úhlopříčkou 12,5 cm. Objem kvádru je V = 0,9 dm³. Vypočtěte povrch kvádru.
- Trojboký hranol
Rovina, která prochází hranou AB a středem hrany CC' pravidelného trojbokého hranolu ABCA'B'C', svírá s podstavou úhel 46 stupňů, |AB| = 12 cm. Vypočítejte objem hranolu.
- Rotační kužel
Objem rotačního kužele je 733 cm³ a strana kužele svírá s rovinou podstavy úhel 75°. Vypočítejte obsah pláště rotačního kužele.
Máš příklad, nad kterým si přemýšlíš alespoň 10 minut? Pošli nám příklad a my Ti ho zkusíme vypočítat.