Úvaha - slovní úlohy a příklady - strana 41 z 111
Počet nalezených příkladů: 2219
- MO 2019 Z9–I–5
Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy
- 2 obdélníky
Rozstřihněte čtverec s plochou 36 cm² na dva obdélníky. Plocha oblasti A a B je v poměru 2:1. Najděte rozměry obdélníků A a B.
- Vymalovat školu
10 malířů vymalovat školu za 20 dní. Za kolik dní vymaluje při stejném tempu práce školu 4 malíři?
- Trojciferných 9531
Kolik trojciferných čísel se nezmění, vyměníme-li číslici na místě stovek s číslicí na místě jednotek?
- Babička 5
Petr a Honza dostali od babičky 315 Kč. Petr Dostál o třetinu víc než Honza. Kolik korun měl každý z nich?
- Gramáže v kuchařce (Matik)
V kuchařce od Matěje Matemakaka se psalo: největší společný dělitel gramáže mouky a gramáže cukru je 15, největší společný dělitel gramáže cukru a gramáže citronové kůry je 6, součin gramáže cukru a gramáže citrónové kůry je 1800, nejmenší společný násobe
- V Kocourkově - Z8-I-6 2019 MO
V Kocourkově používají mince pouze se dvěma hodnotami, které jsou vyjádřeny v kocourkovských korunách kladnými celými čísly. Pomocí dostatečného množství takových mincí je možné zaplatit jakoukoli celočíselnou částku větší než 53 kocourkovských korun, a t
- Na papíře
Na papíře bylo napsáno několik kladných celých čísel. Miška si pamatovala pouze to, že každé číslo bylo polovinou součtu všech ostatních čísel. Kolik čísel mohlo být napsaných na papíře?
- Richardove čísla Z8-I-2 2019
Richard si pohrával s dvěma pětimístnými čísly. Každé sestávalo z navzájem různých číslic, které u jednoho byly všechny liché a u druhého všechny sudé. Po chvíli zjistil, že součet těchto dvou čísel začíná dvojčíslím 11 a končí číslem 1 a že jejich rozdíl
- MO Z8-I-2 2012
Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
- Šestilisté 9321
Ve Starém Lese rostou jen bylinky s 5 a 7 listy. Když kanec Vavřínec sbírá suroviny na bylinný mok, tak vždy otrhne celou bylinku a položí ji do košíku. Jaký je největší počet dopisů, které se mu nikdy nepodaří mít v košíku přesně? Jak by to vypadalo, kdy
- Tenisovou 9281
Dominika začala svou tenisovou kariéru když jí bylo 15 let. Na začátku tenisové kariéry měla o 12 let méně než v roce 2016. Kolik let měla Dominika v roce 2016?
- Z9 – I – 4 MO 2019
Maty dopadl padákem na ostrov obývaný dvěma druhy domorodců: Poctivci, kteří vždy mluví pravdu, a Lháři, kteří vždy lžou. Před dopadem zahlédl v dálce přístav, ke kterému se hodlal dostat. Na prvním rozcestí potkal Maty jednoho domorodce a opodál viděl dr
- Dva lenochodi
Ve větvích stromu jsou dva lenochodi. Jeden je ve vzdálenosti 2,5m od kmene a druhý na druhé straně stromu ve vzdálenosti 4 m od kmene . Lenochodi se vydají seznámit se. Vypočítejte v jaké vzdálenosti od kmene se potkají, pokud lezou stejnou konstantní ry
- Atléti
Všichni chlapci atletického oddílu se seřadili do zastupu podle velikosti. Před Petrem stála jedna osmina celkového počtu. Hned za Petrem stál jeho bratr Radek a za Radkem ještě pět šestin celkového počtu chlapců. Neznámý celkový počet chlapců atletického
- Narozeniny 9011
3 sestry mají dnes narozeniny přičemž jejich věk je v poměru 2:3:4. Za 2 roky bude jejich věk v poměru 5:7:9. Urč v jakém poměru budou jejich věky o 4 roky.
- Před léty
Před 6 lety byla Marcelina matka 2x starší ona a 2x mladší otec. Když bude Marcele 36 let, bude 2x mladší otec. Jak je stará nyní Marcela, její otec a matka?
- Na maturitním
Na maturitním večírku je 15 chlapců a 12 dívek. Určete, kolika způsoby se z nich dají vybrat 4 taneční páry.
- MO Z9 2019 domace kolo
V trojúhelníku ABC leží bod P ve třetině úsečky AB blíže bodu A, bod R je ve třetině úsečky P B blíže bodu P a bod Q leží na úsečce BC tak, že úhly P CB a RQB jsou shodné. Určete poměr obsahů trojúhelníků ABC a PQC.
- Akvárium
Akvárium ve tvaru kvádru je vysoké 40cm, dno má rozměry 70cm a 50cm. Šimon chtěl vytvořit rybičkám zajímavé prostředí, tak jim na dno připevnil tři sloupy. Všechny mají tvar kvádru se čtvercovou podstavou. Podstavná hrana každého kvádru má délku 10cm. Výš
Máš příklad z matematiky, který jsi tady nenašel vyřešený? Pošli nám tenhle příklad a my Ti ho zkusíme vypočítat.