MO Z9-I-6 2019

Kristýna zvolila jisté liché přirozené číslo dělitelné třemi. Jakub s Davidem pak zkoumali trojúhelníky, které mají obvod v milimetrech roven Kristýnou zvolenému číslu a jejichž strany mají délky v milimetrech vyjádřeny navzájem různými celými čísly.
Jakub našel takový trojúhelník, v němž nejdelší ze stran má největší možnou délku, a tuto hodnotu zapsal na tabuli. David našel takový trojúhelník, v němž nejkratší ze stran má největší možnou délku, a tuto hodnotu také zapsal na tabuli. Kristýna obě délky na tabuli správně sečetla a vyšlo jí 1 681 mm.
Určete, které číslo Kristýna zvolila.

Správný výsledek:

K =  2019

Řešení:

K=3k,kN  K=a+b+c a<b<c 3k=a+b+c  max=(K1)/2 min=1  K=j1+j2+j3 j1<j2<j3  j1=1j1=2 j2=(K3)/2 j3=(K1)/2  1+(K3)/2+(K1)/2=K  K=d1+d2+d3 d1<d2<d3 d1=K/31 d2=K/3+0 d3=K/3+1  d1+j3=1681 K/31+(K1)/2=1681   3k/31+(3k1)/2=1681  3 k/31+(3 k1)/2=1681  15k=10095  k=673  K=3 k=3 673=2019  j1=2 mm j2=(K3)/2=(20193)/2=1008 mm j3=(K1)/2=(20191)/2=1009 mm o1=j1+j2+j3=2+1008+1009=2019 mm  d1=K/31=2019/31=672 mm d2=K/3=2019/3=673 mm d3=K/3+1=2019/3+1=674 mm o2=d1+d2+d3=672+673+674=2019 mm  o1=o2=K  x1=d1+j3=672+1009=1681  K=2019



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!







Nejoblíbenější komentáře:
#
Žák
PROC JE K=3k;k∈N ???????????????

10 měsíců  8 Likes
Zobrazuji 11 komentářů:
#
Žák
K=3k;k∈N

10 měsíců  3 Likes
#
Žák
PROC JE K=3k;k∈N ???????????????

10 měsíců  8 Likes
#
Matematik
je to napsane hned v prvni vete zadani ---  liché přirozené číslo dělitelné třemi.... cize cislo 3,6,9 a vylucit delitelne dvoma... spravneby asi malo byt 3+6k; tj . sude vyloucene .

#
Agáta Křenková
Dobrý den, mohli byste mi to prosím někdo vysvětlit?

#
Pokemon
Dobrý den, potřeboval bych objasnit jak jste přišel na vyjádření stran u obou trojůhelníků. Pořád se mi na to nedaří přijít

#
Nějaký Random člověk
K=3k znamená, že ten trojúhelník vytvořený z čísla té Kristýny má 3 strany a k∈N znamená, že každá strana toho trojúhelníku je přirozené číslo takže min. 1.

#
Pokemon
To chápu, ale jak se přišlo na to že např j2=(k-3)/2

#
Žák
Dobry den,vůbec nevím,jak se na to přilšlo,mohl byste mi to někdo vysvětlit prosím?Nechápu postup:(

10 měsíců  3 Likes
#
Matematik
obvod j1+j2+j3 = K; nejmensi mozna delka strany je j1=1 nebo j1=2
pre j1=1 nebude mit trojuhelnik celociselne delky zbylych stran (muzete zkusit)

pro j1=2 a obvodu K=2019 je j2 =  1008 a j3 = 1009. Kvuli trojuhelnikove nerovnosti faktu ze ruznostranni trojuhelnik j2<>j3...
to z toho ze j3=j2+1, ak je jedna strana nejemnsi mozna, pak zbyle musi byt nejvice dlouhe, tj. lisici je o 1.
2 + j2 + (j2+1) = K
2j2 = k-3
j2 = (k-3)/2

9 měsíců  1 Like
#
Pokemon
Děkuji mnohokrát

#
Lxll
Dobrý den, tuto ulohu vubec nechapu, mohl by to nekdo co nejjednoduseji vysvetlit prosim. Predem moc dekujii

9 měsíců  2 Likes
avatar









Tipy na související online kalkulačky
Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici?
Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?
Chcete zaokrouhlit číslo?
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • MO C–I–1 2018
    numbers_49 Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
  • MO Z8–I–3 - 2017 - Adélka
    numbers2_32 Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
  • Z6 – I – 6 MO 2019
    numbers_1 Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Mezi tro
  • Z9–I–3 MO 2019
    reciprocal Pro která celá čísla x je podíl (x+11)/(x+7) celým číslem? Najděte všechna řešení.
  • Z8–I–3 MO 2019
    bus27 Vendelín bydlí mezi dvěma zastávkami autobusu, a to ve třech osminách jejich vzdálenosti. Dnes vyrazil z domu a zjistil, že ať by utíkal k jedné, nebo druhé zastávce, dorazil by na zastávku současně s autobusem. Průměrná rychlost autobusu je 60 km/h. Jako
  • Tadeáš
    mince_2 Tadeáš a Jolana mají dohromady 15 Kč. Jolana má polovinu toho, co Tadeáš. Přesto má Jolana 3 mince a Tadeáš 2. Které mince má Tadeáš a které Jolana?
  • Dělitelnost
    divisibility Je číslo 237610 dělitelné číslem 5?
  • Užasné číslo
    numbers4 Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.
  • Nejbližší číslo
    numbers2_31 Najdi nejbližší přirozené číslo k číslu 4,456 k číslu 44,56 a k číslu 445,6 děkuji a promiňte moji neznalost.
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  • MO Z9 2019 domace kolo
    triangles V trojúhelníku ABC leží bod P ve třetině úsečky AB blíže bodu A, bod R je ve třetině úsečky P B blíže bodu P a bod Q leží na úsečce BC tak, že úhly P CB a RQB jsou shodné. Určete poměr obsahů trojúhelníků ABC a PQC.
  • C – I – 3 MO 2018
    olympics_10 Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
  • C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  • MO 2019 Z8–I–4
    olympics_1 Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  • MO Z9–I–2 - 2017
    trapezium_3 V lichoběžníku VODY je VO delší základnou a průsečík úhlopříček K dělí úsečku VD v poměru 3:2 . Obsah trojúhelníku KOV je 13,5 cm2. Urči obsah celého lichoběžníku.
  • Odčítání
    cards1 Kolikrát můžete číslo 1 odečíst od čísla 4?
  • Z9 – I – 2 MO 2018
    equliateral V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.