Hladina

Jak vysoko sahá voda v nádobě tvaru válce s průměrem podstavy 12 cm, pokud je v ní litr vody? Vyjádři v cm s přesností na 1 desetinné místo.

Správný výsledek:

n =  8,8 cm

Řešení:

V=πr2h h=Vπr2=1000π(12/2)2=8.8 cmV = \pi r^2 h \ \\ h = \dfrac{V}{ \pi r^2 } = \dfrac{ 1000 }{ \pi (12/2)^2 } = 8.8 \ \text{cm}



Naše příklady z velké míry nám poslali nebo vytvořili samotní žáci a studenti. Proto budeme velmi rádi, pokud případně chyby, které jste našli, pravopisné chyby nebo přeformulování příkladu nám prosím pošlete. Děkujeme!





Napište nám prosím svůj komentář ku úloze - postřehy, myšlenku nebo se něco zeptejte. Děkujeme že si takto pomáháme navzájem - žáci, studenti, učitelé, rodiče a tvůrci příkladů.

Zobrazuji 0 komentářů:
avatar




Tipy na související online kalkulačky
Víte objem a jednotku objemu a chcete proměnit jednotku objemu?

K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:

Další podobné příklady a úkoly:

  • Hranoly
    hranol4b Otázka č.1: Hranol má rozměry a = 2,5cm, b = 100mm, c = 12cm. Jaký je jeho objem? a) 3000 cm2 b) 300 cm2 c) 3000 cm3 d) 300 cm3 Otázka č.2: Podstava hranolu je kosočtverec s délkou strany 30 cm a výškou 27 cm. Výška hranolu je 5dm. Jaký je objem hranolu?
  • Pravidelný 6
    hranol3b Pravidelný trojboký hranol má podstavu ve tvaru rovnoramenného trojúhelníku o základně o základně 86 mm a ramenech 6,4 cm, Výška hranolu je 24 cm. Vypočtěte jeho objem.
  • Hranol PT
    prism3_1 Trojboký hranol má podstavu ve tvaru pravoúhlého trojúhelníku, jehož odvěsny mají délku 9 cm a 40 cm. Výška hranolu je 20 cm. Jaký je jeho objem cm3? A povrch cm2?
  • Do kterého
    kornout Do kterého ze sáčků ve tvaru pláště rotačního kužele se vejde větší množství pražené kukuřice? První sáček má výšku 20 cm a délka jeho strany je 24 cm, druhý sáček má poloměr podstavy 10 cm a výšku 25 cm.
  • Těžítko 2
    jehlan_2 Vypočítejte hmotnost těžítka tvaru pravidelného čtyřbokého jehlanu s podstavnou hranou délky 4 cm a tělesovou výškou 6 cm, je-li zhotoveno z materiálu o hustotě 8 g/cm3 .
  • Objem 20
    kuzel2 Objem kužele je 9,42 cm3 a jeho průměr podstavy je 3 cm. Vypočtěte 1/výšku kužele 2/stranu kužele 3/povrch kužele
  • V pravidelném 2
    jehlan3 V pravidelném čtyřbokem jehlanu je výška 6,5 cm a úhel mezi podstavou a boční stěnou je 42°. Vypočítej povrch a objem tělesa. Výpočty zaokrouhlit na 1 desetinné místo.
  • Pravidelný 7
    jehlan_2 Pravidelný čtyřboký jehlan má objem 24dm3 a podstavnou hranu a=4 dm. Vypočtěte: a/výšku jehlanu b/výšku pobočné stěny c/povrch jehlanu
  • Základní 2
    kuzel2 Základní parametry rotačního kužele jsou: Poloměr podstavy 5 cm Výška kužele 12 cm a strana kužele 17 cm. Vypočítej: a/objem kužele b/povrch kužele
  • Plynojem
    sphere_tank Plynojem ma tvar koule o průměru 14m. Kolik m3 plynu se do něj vejde?
  • Kolik 55
    balloon Kolik m2 materiálu je potřeba na zhotovení balonu tvaru koule, který má objem 950 m3?
  • Kosý hranol
    kosyHranol Jaký objem má čtyřboký kosý hranol s podstavnými hranami o délce a=1m, b=1,1m, c=1,2m, d=0,7m, jestliže boční hrana o délce h=3,9m má odchylku od podstavy 20°35´ a hrany a, b svírají úhel 50,5°.
  • Cu drát
    cu_wire Jakou hmotnost má 500 m měděného drátu o průměru 1mm, je-li ρ = 8,9g/cm3?
  • Objemový poměr
    inside_cone Vypočtěte objemový objemů poměr kuliček opsané (poloměr r) a vepsaných (průměr ρ) do rovnostranného rotačního kužele.
  • Z koule
    balls2 Kolik hliněných kuliček o poloměru 1 cm lze vyrobit z koule hlíny o poloměru 8 cm?
  • Komolý kužel
    frustum-of-a-right-circular-cone Vypočtěte objem komolého kužele, jehož dna se skládají z vepsaného kruhu a kruhu odepsaného na protilehlých stěnách kostky s délkou hrany a = 1.
  • Kolik
    wood_1 Kolik m2 desek 10mm hrubých třeba na zhotovení 12 bedýnek na květiny? Rozměry bedničky jsou 180,150 a 1500 mm.