The hemisphere

The hemisphere container is filled with water. What is the radius of the container when 10 liters of water pour from it when tilted 30 degrees?

Result

R =  19.079 cm

Solution:

A=(30rad)=(30 π180 )=0.523598775598 V1=10 l=10 1000 cm3=10000 cm3  cosA=r:R sinA=v:R V2=πv6 (3r2+v2)  V=V1+V2=12 43πR3=23πR3  V2=πRsinA6 (3(RcosA)2+(RsinA)2)  V2=πR3 sinA6 (3(cosA)2+(sinA)2)  23πR3=V1+πR3 sinA6 (3(cosA)2+(sinA)2)  k=π sin(A)6 (3 (cos(A))2+(sin(A))2)=3.1416 sin(0.5236)6 (3 (cos(0.5236))2+(sin(0.5236))2)0.6545  23πR3=V1+k R3  R=V123 πk3=1000023 3.14160.6545319.079 cm   V=23 π R3=23 3.1416 19.079314545.4545 cm3 r=R cos(A)=19.079 cos(0.5236)16.5229 cm v=R sin(A)=19.079 sin(0.5236)9.5395 cm V2=π v6 (3 r2+v2)=3.1416 9.53956 (3 16.52292+9.53952)=50000114545.4545 cm3  V8=VV2=14545.45454545.4545=10000 cm3 V8=V1   R=19.07919.079=19.079  cm A = (30^\circ \rightarrow rad) = (30 \cdot \ \dfrac{ \pi }{ 180 } \ ) = 0.523598775598 \ \\ V_{ 1 } = 10 \ l = 10 \cdot \ 1000 \ cm^3 = 10000 \ cm^3 \ \\ \ \\ \cos A = r:R \ \\ \sin A = v:R \ \\ V_{ 2 } = \dfrac{ \pi v }{ 6 } \cdot \ (3r^2 +v^2) \ \\ \ \\ V = V_{ 1 }+V_{ 2 } = \dfrac{ 1 }{ 2 } \cdot \ \dfrac{ 4 }{ 3 } \pi R^3 = \dfrac{ 2 }{ 3 } \pi R^3 \ \\ \ \\ V_{ 2 } = \dfrac{ \pi R \sin A }{ 6 } \cdot \ (3(R \cos A)^2 +(R \sin A)^2) \ \\ \ \\ V_{ 2 } = \dfrac{ \pi R^3 \ \sin A }{ 6 } \cdot \ (3(\cos A)^2 +(\sin A)^2) \ \\ \ \\ \dfrac{ 2 }{ 3 } \pi R^3 = V_{ 1 } + \dfrac{ \pi R^3 \ \sin A }{ 6 } \cdot \ (3(\cos A)^2 +(\sin A)^2) \ \\ \ \\ k = \dfrac{ \pi \cdot \ \sin(A) }{ 6 } \cdot \ (3 \cdot \ (\cos(A))^2 +(\sin(A))^2) = \dfrac{ 3.1416 \cdot \ \sin(0.5236) }{ 6 } \cdot \ (3 \cdot \ (\cos(0.5236))^2 +(\sin(0.5236))^2) \doteq 0.6545 \ \\ \ \\ \dfrac{ 2 }{ 3 } \pi R^3 = V_{ 1 } + k \cdot \ R^3 \ \\ \ \\ R = \sqrt[3]{ \dfrac{ V_{ 1 } }{ \dfrac{ 2 }{ 3 } \cdot \ \pi - k } } = \sqrt[3]{ \dfrac{ 10000 }{ \dfrac{ 2 }{ 3 } \cdot \ 3.1416 - 0.6545 } } \doteq 19.079 \ cm \ \\ \ \\ \ \\ V = \dfrac{ 2 }{ 3 } \cdot \ \pi \cdot \ R^3 = \dfrac{ 2 }{ 3 } \cdot \ 3.1416 \cdot \ 19.079^3 \doteq 14545.4545 \ cm^3 \ \\ r = R \cdot \ \cos(A) = 19.079 \cdot \ \cos(0.5236) \doteq 16.5229 \ cm \ \\ v = R \cdot \ \sin(A) = 19.079 \cdot \ \sin(0.5236) \doteq 9.5395 \ cm \ \\ V_{ 2 } = \dfrac{ \pi \cdot \ v }{ 6 } \cdot \ (3 \cdot \ r^2 +v^2) = \dfrac{ 3.1416 \cdot \ 9.5395 }{ 6 } \cdot \ (3 \cdot \ 16.5229^2 +9.5395^2) = \dfrac{ 50000 }{ 11 } \doteq 4545.4545 \ cm^3 \ \\ \ \\ V_{ 8 } = V-V_{ 2 } = 14545.4545-4545.4545 = 10000 \ cm^3 \ \\ V_{ 8 } = V_{ 1 } \ \\ \ \\ \ \\ R = 19.079 \doteq 19.079 = 19.079 \ \text { cm }







Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Do you know the volume and unit volume, and want to convert volume units? Pythagorean theorem is the base for the right triangle calculator. See also our trigonometric triangle calculator. Try conversion angle units angle degrees, minutes, seconds, radians, grads.

Next similar math problems:

  1. Secret treasure
    max_cylinder_pyramid Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure.
  2. Wall and body diagonals
    diagonals_prism Calculate the lengths of the wall and body diagonals of the cuboid with edge dimensions of 0.5 m, 1 m, and 2 m
  3. Trapezoid MO
    right_trapezium The rectangular trapezoid ABCD with right angle at point B, |AC| = 12, |CD| = 8, diagonals are perpendicular to each other. Calculate the perimeter and area of ​​the trapezoid.
  4. Garden
    garden_1 Area of a square garden is 6/4 of triangle garden with sides 56 m, 35 m, and 35 m. How many meters of fencing need to fence a square garden?
  5. Hole's angles
    Trapezium2-300x199 I am trying to find an angle. The top of the hole is .625” and the bottom of the hole is .532”. The hole depth is .250” what is the angle of the hole (and what is the formula)?
  6. Coordinates of square vertices
    rotate_square I have coordinates of square vertices A / -3; 1/and B/1; 4 /. Find coordinates of vertices C and D, C 'and D'. Thanks Peter.
  7. A rhombus
    rhombus-diagonals2 A rhombus has sides of length 10 cm, and the angle between two adjacent sides is 76 degrees. Find the length of the longer diagonal of the rhombus.
  8. Isosceles triangle 10
    iso_23 In an isosceles triangle, the equal sides are 2/3 of the length of the base. Determine the measure of the base angles.
  9. A concrete pedestal
    frustum-of-a-right-circular-cone A concrete pedestal has a shape of a right circular cone having a height of 2.5 feet. The diameter of the upper and lower bases are 3 feet and 5 feet, respectively. Determine the lateral surface area, total surface area, and the volume of the pedestal.
  10. Cuboid face diagonals
    face_diagonals The lengths of the cuboid edges are in the ratio 1: 2: 3. Will the lengths of its diagonals be the same ratio? The cuboid has dimensions of 5 cm, 10 cm, and 15 cm. Calculate the size of the wall diagonals of this cuboid.
  11. Body diagonal
    kvadr_diagonal Calculate the volume of a cuboid whose body diagonal u is equal to 6.1 cm. Rectangular base has dimensions of 3.2 cm and 2.4 cm
  12. Uphill garden
    12perctent I have a garden uphill, increasing from 0 to 4.5 m for a length of 25 m, how much is the climb in percent?
  13. Medians in right triangle
    triangle_rt_taznice It is given a right triangle, angle C is 90 degrees. I know it medians t1 = 8 cm and median t2 = 12 cm. .. How to calculate the length of the sides?
  14. Faces diagonals
    cuboid_1 If the diagonals of a cuboid are x, y, and z (wall diagonals or three faces) respectively than find the volume of a cuboid. Solve for x=1.2, y=1.7, z=1.45
  15. Two chords
    tetivy Calculate the length of chord AB and perpendicular chord BC to circle if AB is 4 cm from the center of the circle and BC 8 cm from the center of the circle.
  16. Angles of elevation
    height_building From points A and B on level ground, the angles of elevation of the top of a building are 25° and 37° respectively. If |AB| = 57m, calculate, to the nearest meter, the distances of the top of the building from A and B if they are both on the same side of t
  17. Space diagonal
    cube_diagonals The space diagonal of a cube is 129.91 mm. Find the lateral area, surface area and the volume of the cube.