Polokoule 2

Nádoba tvaru polokoule je zcela naplněna vodou. Jaký poloměr má nádoba, když z ní při naklonění o 30 stupňů vyteče 10 l vody?

Výsledek

R =  19.079 cm

Řešení:

A=(30rad)=(30 π180 )=0.523598775598 V1=10 l=10 1000 cm3=10000 cm3  cosA=r:R sinA=v:R V2=πv6 (3r2+v2)  V=V1+V2=12 43πR3=23πR3  V2=πRsinA6 (3(RcosA)2+(RsinA)2)  V2=πR3 sinA6 (3(cosA)2+(sinA)2)  23πR3=V1+πR3 sinA6 (3(cosA)2+(sinA)2)  k=π sin(A)6 (3 (cos(A))2+(sin(A))2)=3.1416 sin(0.5236)6 (3 (cos(0.5236))2+(sin(0.5236))2)0.6545  23πR3=V1+k R3  R=V123 πk3=1000023 3.14160.6545319.079 cm   V=23 π R3=23 3.1416 19.079314545.4545 cm3 r=R cos(A)=19.079 cos(0.5236)16.5229 cm v=R sin(A)=19.079 sin(0.5236)9.5395 cm V2=π v6 (3 r2+v2)=3.1416 9.53956 (3 16.52292+9.53952)=50000114545.4545 cm3  V8=VV2=14545.45454545.4545=10000 cm3 V8=V1   R=19.07919.079=19.079  cm A = (30^\circ \rightarrow rad) = (30 \cdot \ \dfrac{ \pi }{ 180 } \ ) = 0.523598775598 \ \\ V_{ 1 } = 10 \ l = 10 \cdot \ 1000 \ cm^3 = 10000 \ cm^3 \ \\ \ \\ \cos A = r:R \ \\ \sin A = v:R \ \\ V_{ 2 } = \dfrac{ \pi v }{ 6 } \cdot \ (3r^2 +v^2) \ \\ \ \\ V = V_{ 1 }+V_{ 2 } = \dfrac{ 1 }{ 2 } \cdot \ \dfrac{ 4 }{ 3 } \pi R^3 = \dfrac{ 2 }{ 3 } \pi R^3 \ \\ \ \\ V_{ 2 } = \dfrac{ \pi R \sin A }{ 6 } \cdot \ (3(R \cos A)^2 +(R \sin A)^2) \ \\ \ \\ V_{ 2 } = \dfrac{ \pi R^3 \ \sin A }{ 6 } \cdot \ (3(\cos A)^2 +(\sin A)^2) \ \\ \ \\ \dfrac{ 2 }{ 3 } \pi R^3 = V_{ 1 } + \dfrac{ \pi R^3 \ \sin A }{ 6 } \cdot \ (3(\cos A)^2 +(\sin A)^2) \ \\ \ \\ k = \dfrac{ \pi \cdot \ \sin(A) }{ 6 } \cdot \ (3 \cdot \ (\cos(A))^2 +(\sin(A))^2) = \dfrac{ 3.1416 \cdot \ \sin(0.5236) }{ 6 } \cdot \ (3 \cdot \ (\cos(0.5236))^2 +(\sin(0.5236))^2) \doteq 0.6545 \ \\ \ \\ \dfrac{ 2 }{ 3 } \pi R^3 = V_{ 1 } + k \cdot \ R^3 \ \\ \ \\ R = \sqrt[3]{ \dfrac{ V_{ 1 } }{ \dfrac{ 2 }{ 3 } \cdot \ \pi - k } } = \sqrt[3]{ \dfrac{ 10000 }{ \dfrac{ 2 }{ 3 } \cdot \ 3.1416 - 0.6545 } } \doteq 19.079 \ cm \ \\ \ \\ \ \\ V = \dfrac{ 2 }{ 3 } \cdot \ \pi \cdot \ R^3 = \dfrac{ 2 }{ 3 } \cdot \ 3.1416 \cdot \ 19.079^3 \doteq 14545.4545 \ cm^3 \ \\ r = R \cdot \ \cos(A) = 19.079 \cdot \ \cos(0.5236) \doteq 16.5229 \ cm \ \\ v = R \cdot \ \sin(A) = 19.079 \cdot \ \sin(0.5236) \doteq 9.5395 \ cm \ \\ V_{ 2 } = \dfrac{ \pi \cdot \ v }{ 6 } \cdot \ (3 \cdot \ r^2 +v^2) = \dfrac{ 3.1416 \cdot \ 9.5395 }{ 6 } \cdot \ (3 \cdot \ 16.5229^2 +9.5395^2) = \dfrac{ 50000 }{ 11 } \doteq 4545.4545 \ cm^3 \ \\ \ \\ V_{ 8 } = V-V_{ 2 } = 14545.4545-4545.4545 = 10000 \ cm^3 \ \\ V_{ 8 } = V_{ 1 } \ \\ \ \\ \ \\ R = 19.079 \doteq 19.079 = 19.079 \ \text { cm }







Napište nám komentář ke příkladu (úlohe) a jeho řešení (například pokud je stále něco nejasné nebo máte jiné řešení, nebo příklad nevíte vypočítat, nebo-li řešení je nesprávné...):

Zobrazuji 0 komentářů:
1st comment
Buďte první, kdo napíše komentář!
avatar




Máte lineární rovnici nebo soustavu rovnic a hledáte její řešení? Nebo máte kvadratickou rovnici? Víte objem a jednotku objemu a chcete proměnit jednotku objemu? Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka. Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku. Vyzkoušejte si převody jednotek úhlů úhlové stupně, minuty, sekundy, radiány.

Další podobné příklady a úkoly:

  1. Polokoule
    odsek Nádoba tvaru duté polokoule je naplněna vodou do výšky v = 10 cm. Kolik litrů vody obsahuje, pokud vnitřní průměr nádoby je d = 28cm?
  2. Hydroglobus
    spherical-tanks Zásobník vodní věže je koule o poloměru 35 stop. Pokud je nádrž naplněna na čtvrtinu plné, jaká je výška vody?
  3. Rovnoramenný IV
    iso_triangle V rovnoramenném trojúhelníku ABC je |AC| = |BC| = 13. |AB| = 10. Vypočtěte poloměr vepsané (r) a opsané (R) kružnice.
  4. Kupola
    sphere_segment Klenutý stadion má tvar kulového segmentu s poloměrem základny 150 m. Klenba musí obsahovat objem 3500000 m³. Určitě výšku stadionu uprostřed (zaokrouhlujte na nejbližší desetinu metru).
  5. Budova
    building Budovu jsem zaměřil pod úhlem 30°. Když jsem se pohnul o 5 m budovu jsem zaměřil pod úhlem 45°. Jaká je výška budovy?
  6. Zo 6 na 3
    thales_1 Chceme dokázat sporem tvrzení: Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi. Z jakého předpokladu budeme vycházet?
  7. Navigace lodě
    navigation Loď pluje 84 km na kurzu 17° a pak cestuje na kurzu 107° 135 km. Najděte vzdálenost konce cesty z výchozího bodu a zaokrouhlete je na nejbližší kilometr.
  8. Na kosiny
    357_triangle Vypočítej velikosti zbývajících úhlů trojúhelníku ABC, jestliže je dáno: a= 3cm; b=5cm; c= 7cm (použij sinovou a kosinovou větu).
  9. Odvěsny
    pyt_theorem Přepona pravoúhlého trojúhelníka je 41 a součet odvěsen je 49. Určete velikost odvěsen.
  10. Vypočítejte
    equilateral_triangle2 Vypočítejte délku strany rovnostranného trojúhelníku, jehož obsah je 50cm čtverečních.
  11. Trojúhelník
    lalala V trojúhelníku ABC se stranou BC délky 2 cm je bod K středem strany AB. Body L a M rozdělují stranu AC na tři shodné úsečky. Trojúhelník KLM je rovnoramenný s pravým úhlem u vrcholu K. Určete délky stran AB, AC trojúhelníku ABC.
  12. Tangens úhlu
    tan V případě, že tangens úhlu a pravoúhlého trojúhelníku je 0,8. Pak je její nejdelší strana . ..
  13. Těžnice RR trojúhelníku
    iso1 Rovnoramenný trojúhelník ABC má základnu | AB | = 16cm a rameno délky 10cm. Jaké jsou délky těžnic?
  14. Trojúhelník ABC
    triangle_4 V trojúhelníku ABC se velikost vnitřního uhlu gama rovná tretine vnitrniho uhlu alfa. Velikost vnitrniho uhlu beta je o 80 stupňu vetší než velikost uhlu gama. Vypocitej velikosti vnitrnich uhlu trojúhelníku ABC
  15. ABS KC
    complex_num Vypočítejte absolutní hodnotu komplexního čísla -15-29i.
  16. Čtyrstěn
    tetrahedron (1) Vypočtěte výšku a objem pravidelného čtyřstěnu, jehož hrana má délku 19 cm.
  17. Trojúhelník a jeho výšky
    triangle_2 Vypočítejte délky stran trojúhelníku ABC, jestliže va=5 cm, vb=7 cm a strana b je o 5 cm kratší než strana a.