The hemisphere

The hemisphere container is filled with water. What is the radius of the container when 10 liters of water pour from it when tilted 30 degrees?

Result

R =  19.079 cm

Solution:

A=(30rad)=(30 π180 )=0.523598775598 V1=10 l=10 1000 cm3=10000 cm3  cosA=r:R sinA=v:R V2=πv6 (3r2+v2)  V=V1+V2=12 43πR3=23πR3  V2=πRsinA6 (3(RcosA)2+(RsinA)2)  V2=πR3 sinA6 (3(cosA)2+(sinA)2)  23πR3=V1+πR3 sinA6 (3(cosA)2+(sinA)2)  k=π sin(A)6 (3 (cos(A))2+(sin(A))2)=3.1416 sin(0.5236)6 (3 (cos(0.5236))2+(sin(0.5236))2)0.6545  23πR3=V1+k R3  R=V123 πk3=1000023 3.14160.6545319.079 cm   V=23 π R3=23 3.1416 19.079314545.4545 cm3 r=R cos(A)=19.079 cos(0.5236)16.5229 cm v=R sin(A)=19.079 sin(0.5236)9.5395 cm V2=π v6 (3 r2+v2)=3.1416 9.53956 (3 16.52292+9.53952)=50000114545.4545 cm3  V8=VV2=14545.45454545.4545=10000 cm3 V8=V1   R=19.07919.079=19.079  cm A = (30^\circ \rightarrow rad) = (30 \cdot \ \dfrac{ \pi }{ 180 } \ ) = 0.523598775598 \ \\ V_{ 1 } = 10 \ l = 10 \cdot \ 1000 \ cm^3 = 10000 \ cm^3 \ \\ \ \\ \cos A = r:R \ \\ \sin A = v:R \ \\ V_{ 2 } = \dfrac{ \pi v }{ 6 } \cdot \ (3r^2 +v^2) \ \\ \ \\ V = V_{ 1 }+V_{ 2 } = \dfrac{ 1 }{ 2 } \cdot \ \dfrac{ 4 }{ 3 } \pi R^3 = \dfrac{ 2 }{ 3 } \pi R^3 \ \\ \ \\ V_{ 2 } = \dfrac{ \pi R \sin A }{ 6 } \cdot \ (3(R \cos A)^2 +(R \sin A)^2) \ \\ \ \\ V_{ 2 } = \dfrac{ \pi R^3 \ \sin A }{ 6 } \cdot \ (3(\cos A)^2 +(\sin A)^2) \ \\ \ \\ \dfrac{ 2 }{ 3 } \pi R^3 = V_{ 1 } + \dfrac{ \pi R^3 \ \sin A }{ 6 } \cdot \ (3(\cos A)^2 +(\sin A)^2) \ \\ \ \\ k = \dfrac{ \pi \cdot \ \sin(A) }{ 6 } \cdot \ (3 \cdot \ (\cos(A))^2 +(\sin(A))^2) = \dfrac{ 3.1416 \cdot \ \sin(0.5236) }{ 6 } \cdot \ (3 \cdot \ (\cos(0.5236))^2 +(\sin(0.5236))^2) \doteq 0.6545 \ \\ \ \\ \dfrac{ 2 }{ 3 } \pi R^3 = V_{ 1 } + k \cdot \ R^3 \ \\ \ \\ R = \sqrt[3]{ \dfrac{ V_{ 1 } }{ \dfrac{ 2 }{ 3 } \cdot \ \pi - k } } = \sqrt[3]{ \dfrac{ 10000 }{ \dfrac{ 2 }{ 3 } \cdot \ 3.1416 - 0.6545 } } \doteq 19.079 \ cm \ \\ \ \\ \ \\ V = \dfrac{ 2 }{ 3 } \cdot \ \pi \cdot \ R^3 = \dfrac{ 2 }{ 3 } \cdot \ 3.1416 \cdot \ 19.079^3 \doteq 14545.4545 \ cm^3 \ \\ r = R \cdot \ \cos(A) = 19.079 \cdot \ \cos(0.5236) \doteq 16.5229 \ cm \ \\ v = R \cdot \ \sin(A) = 19.079 \cdot \ \sin(0.5236) \doteq 9.5395 \ cm \ \\ V_{ 2 } = \dfrac{ \pi \cdot \ v }{ 6 } \cdot \ (3 \cdot \ r^2 +v^2) = \dfrac{ 3.1416 \cdot \ 9.5395 }{ 6 } \cdot \ (3 \cdot \ 16.5229^2 +9.5395^2) = \dfrac{ 50000 }{ 11 } \doteq 4545.4545 \ cm^3 \ \\ \ \\ V_{ 8 } = V-V_{ 2 } = 14545.4545-4545.4545 = 10000 \ cm^3 \ \\ V_{ 8 } = V_{ 1 } \ \\ \ \\ \ \\ R = 19.079 \doteq 19.079 = 19.079 \ \text { cm }







Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation? Do you know the volume and unit volume, and want to convert volume units? Pythagorean theorem is the base for the right triangle calculator. See also our trigonometric triangle calculator. Try conversion angle units angle degrees, minutes, seconds, radians, grads.

Next similar math problems:

  1. Orlík hydroelectric plant
    1280px-Orlík_1 The Orlík hydroelectric power plant, built in 1954-1961, consists of four Kaplan turbines. For each of them, the water with a flow rate of Q = 150 m3/s is supplied with a flow rate of h = 70.5 m at full power. a) What is the total installed power of the p
  2. Reconstruction of the corridor
    koridor Calculate how many minutes will be reduced to travel 187 km long railway corridor, where the maximum speed increases from 120 km/h to 160 km/h. Calculate how many minutes will shorten travel time, if we consider that the train must stop at 6 stations, eac
  3. Cu thief
    trolleywire_1 The thief stole 122 meters copper wire with cross-section area of 95 mm2. Calculate how much money gets in the scrap redemption, if redeemed copper for 5.5 eur/kg? The density of copper is 8.96 t/m3.
  4. Trains for people
    757_rusen It is said that the train is synonymous to delay. Calculate the average speed of travel by train long 85 km, with regular train leave at 7:00 and arrive at 8:18, but train is late and has departure at 8:10 and arrive at 9:27.
  5. Cuboid 5
    drevo_1 Calculate the mass of the cuboid with dimensions of 12 cm; 0.8 dm and 100 mm made from spruce wood (density = 550 kg/m3).
  6. Copper plate
    plech Calculate the thickness of the copper plate with a density 8.7 g/cm³ measuring 1.5 meters and 80 cm and its weight is 3.65 kg
  7. Pump
    pumpa What power has a pump output to move 4853 hl of water to a height of 31 m for 8 hours?
  8. Canister
    kanister Gasoline is stored in a cuboid canister having dimensions 44.5 cm, 30 cm, 16 cm. What is the total weight of a full canister when one cubic meter of gasoline weighs 710 kg and the weight of empty canister is 1.5 kg?
  9. Car
    motor_cylinders_kW At what horizontal distance reaches the car weight m = 753 kg speed v = 74 km/h when the car engine develops a tensile force F = 3061 N. (Neglect resistance of the environment.)
  10. Copper sheet
    cuplech The copper plate has a length of 1 m, width 94 cm and weighs 9 kg. What is the plate thickness, if 1 m3 weighs 8715 kg?
  11. Sphere
    1sphere The surface of the sphere is 12100 cm2, and weight is 136 kg. What is its density?
  12. Traffic collision
    crash When investigating a traffic accident, it was found that the driver stopped the vehicle immediately after the accident by constant braking on a 150 m track in 15 seconds. Do you approve that the driver exceeded the permitted speed (50 km/h) in the village.
  13. Sphere slices
    sphere_slices Calculate volume and surface of a sphere, if the radii of parallel cuts r1=31 cm, r2=92 cm and its distance v=25 cm.
  14. A car
    car_31 A car weighing 1.05 tonnes driving at the maximum allowed speed in the village (50 km/h) hit a solid concrete bulkhead. Calculate height it would have to fall on the concrete surface to make the impact intensity the same as in the first case!
  15. Clock
    hodiny How many times a day hands on a clock overlap?
  16. Aluminum wire
    drat Aluminum wire of 3 mm diameter has a total weight of 1909 kg and a density of 2700 kg/m3. How long is the wire bundle?
  17. Tower model
    tower Tower height is 300 meters, weight 8000 tons. How high is the model of the tower weight 1 kg? (State the result in the centimeters). The model is made from exactly the same material as the original no numbers need to be rounded. The result is a three-digi