Šťastný deň

Číslo dňa je poradové číslo daného dňa v príslušnom mesiaci (teda napr. číslo dňa 5. augusta 2016 je 5). Ciferný súčet dňa je súčet hodnôt všetkých cifier v dátume tohto dňa (teda napr. ciferný súčet dňa 5. augusta 2016 je 5+8+2+0+1+6 = 22). Šťastný deň je taký, ktorého číslo dňa je rovné cifernému súčtu dňa. Určte, koľko šťastných dní je v roku 2016 a ktoré to sú.

Správny výsledok:

n =  10

Riešenie:

20.9.2016
21.9.2016
22.9.2016
23.9.2016
24.9.2016
25.9.2016
26.9.2016
27.9.2016
28.9.2016
29.9.2016




Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 4 komentáre:
#
Mo-radce
Nápoveda. Vyjadrite definíciu šťastného dňa pomocou rovnice.

Iné riešenie:

Číslo dňa je najviac dvojciferné číslo v rozmedzí od 1 do 31, ktoré označíme 10a + b; číslice a môže byť 0, 1, 2, alebo 3. Číslo mesiaca je najvyššie dvojmiestne číslo v rozmedzí od 1 do 12, ktoré označíme 10c + d; číslica c môže byť buď 0, alebo 1. Pri tomto značenie je šťastný deň taký, že platí:

10a + b = a + b + c + d + 2 + 0 + 1 + 6,
9 (a - 1) = c + d

Odtiaľ vyplýva, že b môže byť ľubovoľné, a musí byť buď 2, alebo 3 (a súčet c + d je deliteľný 9).
• Ak a = 2, potom c + d = 9, čo znamená, že c = 0 ad = 9.
• Ak a = 3, potom c + d = 18, čo vzhľadom na vyššie formulovaným obmedzením nemá vyhovujúce riešenie.

Všetky šťastné dni sú teda v mesiaci september, a to od 20. do 29., celkovo 10 dní.

5 rokov  2 Likes
#
Ella
Nemôžte napísať jednoduchši spôsob? Alebo inač napísaný lebo tomu som veľmi nepochopila.Ďakujem

#
Pošta
Ale to ze vysledok su dni od 20.9.2016 po  29.9.2016 je dufam jasne ;)

#
Ella
Ano.Len ten postup pri výpočte nechápem

avatar









Tipy na súvisiace online kalkulačky
Prajete si premeniť jednotku času, napr. hodiny na minúty?

Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady a úlohy:

  • Betka
    numbers_2 Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skla
  • Nádoby - prelievanie
    nadoby Máme nádobu s obsahom 7 litrov, 5 litrov a 2 litre. Najväčšia nádoba je naplnená tekutinou, ostatné sú prázdne. Dokážeš iba prelievaním získať 5 litrov a dvakrát po jednom litri tekutiny? Na koľko preliatie to ide?
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
  • Na papieri
    number_line Na papieri bolo napísaných niekoľko kladných celých čísel. Miška si pamätala iba to, že každé číslo bolo polovicou súčtu všetkých ostatných čísel. Koľko čísel mohlo byť napísaných na papieri?
  • MO C-I-1 2019
    numbers Nájdite všetky štvorciferné čísla abcd s ciferným súčtom 12 také, že ab-cd=1
  • Zvonkohra MO - Z5 - 1 - 66
    Zvonkohra.JPG Zvonkohra na nádvorí hrá o každej celej hodine krátku skladbu, a to počínajúc 8. a končiac 22. hodinou. Skladieb je celkom osemnásť, o celej hodine sa hrá vždy iba jedna a po odohraní všetkých osemnástich sa začína v rovnakom poradí znova. Oľga a Ľuboš bo
  • Štedrý deň
    stedryd V nepriestupnom roku bolo 53 nedieľ. Na aký deň týždňa pripadol Štedrý deň?
  • Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  • Roboti Z7
    1-robot V škole pre robotov do jednej triedy chodí dvadsať robotov Robertov, ktorí sú očíslovaní Robert 1 až Robert 20. V triede je práve napätá atmosféra, rozprávajú sa spolu iba niektorí roboti. Roboti s nepárnym číslom sa nerozprávajú s robotmi s párnym číslom
  • Obdĺžnik - kto má pravdu
    mo_1 Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto
  • Marienka - mo
    cukriky_4 Marienka rozmiestni do vrcholov pravidelného osemuholníka rôzne počty od jedného po osem cukríkov. Peter si potom môže vybrať, ktoré tri kôpky cukríkov dá Marienke, ostatné si ponechá. Jedinou podmienkou je, že tieto tri kôpky ležia vo vrcholoch rovnorame
  • Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  • Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  • MO B 2019 - uloha 2
    olympics Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
  • Päť čísel v pomere
    arithmet_seq Daných je 5 celých čísel, ktoré sú v pomere 1:2:3:4:5. Ich aritmetický priemer je 12. Určte najmenšie z týchto čísel.
  • Opica
    monkey Do studne hlbokej 27 metrov spadla opica. Každý deň sa jej darí vyškriabať sa 3 metre, v noci však spadne späť o 2 metre. Na ktorý deň sa dostane opica zo studne?
  • Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné