Obdĺžnik - kto má pravdu
Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3.
Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto z nich má pravdu.
Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto z nich má pravdu.
Správna odpoveď:

Zobrazujem 2 komentáre:
Peter5
Nápoveda. Zistite, ktoré rôzne súčty možno získať.
Možné riešenie. Všetky možné dvojice, ktoré možno z daných čísel zložiť, sú (1,1); (1,2), (2,1); (1,3), (2,2), (3,1); (2,3), (3,2); (3,3).
Tieto možnosti dávajú 5 rôznych súčtov, a to 2, 3, 4, 5, 6 (dvojice s rôznymi súčtami sú oddelené bodkočiarkami). Na uvedenom obrázku však potrebujeme 6 dvojíc s rôznymi súčty, pravdu má teda Zuzka.
Poznámky.
a) Na určenie možných súčtov netreba vypisovať všetky prípustné dvojice:
najmenší súčet odpovedá 1 + 1 = 2, najväčší je 3 + 3 = 6. Odtiaľ vyplýva, že možných súčtov nie je viac ako 5, čo je menej ako požadovaných 6.
b) Riešenie úlohy pomocou všetkých možných vyplnenie tabuľky a kontrolou takto získaných súčtov je extrémne prácne.
Možné riešenie. Všetky možné dvojice, ktoré možno z daných čísel zložiť, sú (1,1); (1,2), (2,1); (1,3), (2,2), (3,1); (2,3), (3,2); (3,3).
Tieto možnosti dávajú 5 rôznych súčtov, a to 2, 3, 4, 5, 6 (dvojice s rôznymi súčtami sú oddelené bodkočiarkami). Na uvedenom obrázku však potrebujeme 6 dvojíc s rôznymi súčty, pravdu má teda Zuzka.
Poznámky.
a) Na určenie možných súčtov netreba vypisovať všetky prípustné dvojice:
najmenší súčet odpovedá 1 + 1 = 2, najväčší je 3 + 3 = 6. Odtiaľ vyplýva, že možných súčtov nie je viac ako 5, čo je menej ako požadovaných 6.
b) Riešenie úlohy pomocou všetkých možných vyplnenie tabuľky a kontrolou takto získaných súčtov je extrémne prácne.
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
témaÚroveň náročnosti úlohy
Súvisiace a podobné príklady:
- Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
- V kuchyni 2
V kuchyni s rozmermi tri krát dva metre chceme na zem položiť štvorcové dlaždice o strane 20 cm. Pokiaľ v jednom balení je práve 40 dlaždíc, najmenej koľko takých balení musíme kúpiť, aby nám to vystačilo na vydláždenie celej kuchyne? (Dlaždice pokladáme
- Dávidovo číslo
Jana a David trénujú sčítanie desatinných čísel tak, ze každý z nich napíše jedno číslo, a tieto dve čísla potom spočítajú. Posledný príklad im vyšiel 11,11. Dávidovo číslo malo pred desatinnou čiarkou rovnaký počet číslic ako za ňou, Janino číslo tiež. D
- 7 kníh
Koľkými spôsobmi možno uložiť na poličke 7 kníh, ak je medzi nimi jeden trojdielny román, ktorý má byť uložený vedľa seba?
- MO Z6-1-3 2017 šachovnica
Veronika má klasickú šachovnicu s 8×8 políčkami. Riadky sú označené ciframi 1 až 8, stĺpce písmenami A až H. Veronika položila na políčko B1 jazdca, s ktorým možno pohybovať iba tak ako v šachu. 1. Je možné premiestniť jazdca štyrmi ťahmi na políčko H1? 2
- Deti
Stretnú sa dvaja priatelia a ako správni chlapi zájdu spolu na pivo. Po prebratí najdôležitejších tém (politika, ženy, futbal...), sa jeden pýta: - A koľko máš vlastne detí? - Mám 3 deti. - A koľko majú rokov? Priateľovi sa už nechce odpovedať na priamu o
- Palko
Palko má 5 kartičiek s číslicami 0, 1, 6, 7, 9. Kolko nepárnych trojciferných čísel z nich môže utvoriť?