Obdĺžnik - kto má pravdu
Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3.
Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto z nich má pravdu.
Výsledok
Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto z nich má pravdu.
Výsledok

Zobrazujem 2 komentáre:

Peter5
Nápoveda. Zistite, ktoré rôzne súčty možno získať.
Možné riešenie. Všetky možné dvojice, ktoré možno z daných čísel zložiť, sú (1,1); (1,2), (2,1); (1,3), (2,2), (3,1); (2,3), (3,2); (3,3).
Tieto možnosti dávajú 5 rôznych súčtov, a to 2, 3, 4, 5, 6 (dvojice s rôznymi súčtami sú oddelené bodkočiarkami). Na uvedenom obrázku však potrebujeme 6 dvojíc s rôznymi súčty, pravdu má teda Zuzka.
Poznámky.
a) Na určenie možných súčtov netreba vypisovať všetky prípustné dvojice:
najmenší súčet odpovedá 1 + 1 = 2, najväčší je 3 + 3 = 6. Odtiaľ vyplýva, že možných súčtov nie je viac ako 5, čo je menej ako požadovaných 6.
b) Riešenie úlohy pomocou všetkých možných vyplnenie tabuľky a kontrolou takto získaných súčtov je extrémne prácne.
Možné riešenie. Všetky možné dvojice, ktoré možno z daných čísel zložiť, sú (1,1); (1,2), (2,1); (1,3), (2,2), (3,1); (2,3), (3,2); (3,3).
Tieto možnosti dávajú 5 rôznych súčtov, a to 2, 3, 4, 5, 6 (dvojice s rôznymi súčtami sú oddelené bodkočiarkami). Na uvedenom obrázku však potrebujeme 6 dvojíc s rôznymi súčty, pravdu má teda Zuzka.
Poznámky.
a) Na určenie možných súčtov netreba vypisovať všetky prípustné dvojice:
najmenší súčet odpovedá 1 + 1 = 2, najväčší je 3 + 3 = 6. Odtiaľ vyplýva, že možných súčtov nie je viac ako 5, čo je menej ako požadovaných 6.
b) Riešenie úlohy pomocou všetkých možných vyplnenie tabuľky a kontrolou takto získaných súčtov je extrémne prácne.

Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Ďaľšie podobné príklady a úlohy:
- Z7–I–6, výstava mačiek
Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka
- Z7–I–1 MO 2018
Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné
- Úžasné číslo
Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
- Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
- MO Z6-1-3 2017 šachovnica
Veronika má klasickú šachovnicu s 8×8 políčkami. Riadky sú označené ciframi 1 až 8, stĺpce písmenami A až H. Veronika položila na políčko B1 jazdca, s ktorým možno pohybovať iba tak ako v šachu. 1. Je možné premiestniť jazdca štyrmi ťahmi na políčko H1? 2
- Číselná os
V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2
- Pán Cuketa
Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
- Betka
Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skla
- Päť čísel v pomere
Daných je 5 celých čísel, ktoré sú v pomere 1:2:3:4:5. Ich aritmetický priemer je 12. Určte najmenšie z týchto čísel.
- Na papieri
Na papieri bolo napísaných niekoľko kladných celých čísel. Miška si pamätala iba to, že každé číslo bolo polovicou súčtu všetkých ostatných čísel. Koľko čísel mohlo byť napísaných na papieri?
- Osemsten súčet
Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré
- Z5–I–6 MO 2017
Na stole ležalo osem kartičiek s číslami 2,3,5,7,11,13,17,19. Fero si vybral tri kartičky. Sčítal na nich napísané čísla a zistil, že ich súčet je o 1 väčší ako súčet čísel na zvyšných kartičkách. Ktoré kartičky mohli zostať na stole? Určte všetky možnost
- Z9-I-6 MO 2017
Na priamke predstavujúcej číselnú os uvážte navzájom rôzne body zodpovedajúce číslam a, 2a, 3a + 1 vo všetkých možných poradiach. Pri každej možnosti rozhodnite, či je také usporiadanie možné. Ak áno, uveďte konkrétny príklad, ak nie, zdôvodnite prečo.
- MO Z8–I–3 - 2017 - Adelka
Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
- Vláčik
Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným va
- Utierky
Mamička vyprala štvorcové utierky a vešia je vedľa seba na šnúru natiahnutú medzi dvoma stromami. Použila šnúru s dĺžkou 7,5 metra, pričom na uviazanie okolo kmeňa potrebovala na každej strane 8 dm. Všetky utierky majú šírku 45 cm. Medzi krajné utierky a
- Klávesy
Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klár