Z9–I–4 MO 2017

Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa číslam pomôcť. Naopak výpravca tvrdil, že to nie je možné. Rozhodnite, kto z nich mal pravdu.

Výsledok

x = (Správna odpoveď je: V) Nesprávne

Riešenie:

a=1+2+3+4+5+6+7+8+9=45 s1=9+9=18 s2=a+a=45+45=90 s3=b+b t=as1=4518=27 27=s2+s3 27=2a+2b 27/2=a+b x=Va = 1+2+3+4+5+6+7+8+9 = 45 \ \\ s_{ 1 } = 9 + 9 = 18 \ \\ s_{ 2 } = a + a = 45 + 45 = 90 \ \\ s_{ 3 } = b + b \ \\ t = a - s_{ 1 } = 45 - 18 = 27 \ \\ 27 = s_{ 2 } + s_{ 3 } \ \\ 27 = 2a + 2b \ \\ 27/2 = a+b \ \\ x = V



Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlete. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 7 komentárov:
#
Dr Math
výpravca má pravdu. V každom vagóne musí byť súčet čísel párny. V jednom vagóne musí sedieť 9 a teda i daľšie dve čísla, ktorých súčet je 9. Tj. celkovo v tomto vagóne 18. Celkový súčet čísel je 45 a na ďaľšie dva vagóny už pripadá 45-18 = 27. 27 sa však nedá rozložiť na súčet dvoch párnych čísel (v každom vagóne je súčet vždy párny). A preto úloha nemá riešenie a výpravca má pravdu.

#
Žiak
Prečo v každom vagóne musí byť súčet čísel párny?

#
Xyz
Parne preto lebo "v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch"

ak najvacsie cislo je a , tak sucet ostatnych je tiez a. a+a=2a, cize zarucene parne cislo,...

#
Žiak
Ako  vám prosím višlo že s1=90?

#
Dr Math
no lebo to tak je

#
Žiak
Aha dobre veľmi pekne dakujem

#
Dr Math
Keď v jednom vagóne je súčet párny, tak v troch je súčet takisto párny. To znamená, že ak je súčet čísel 1-9 párny, tak mal výpravca pravdu, ak nepárny, tak by mal pravdu sprievodca.

avatar









Ďaľšie podobné príklady a úlohy:

  1. Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľné
  2. MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  3. Autíčka
    numbers2_13 Pavel má zbierku autíčok. Chcel je novo usporiadať do skupín. Ale pri delení po troch, po štyroch, po šiestich i po ôsmich mu vždy jedno zostalo. Až keď tvoril skupiny po siedmich, rozdelil všetky. Koľko autíčok v zbierke?
  4. Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dvo
  5. Šesťciferné prvočísla
    numberline_1 Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
  6. MO 2019 Z9–I–5
    olympics Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka
  7. Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné č
  8. Richardove čísla Z8-I-2 2019
    numbers2 Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich roz
  9. Z6–I–5 MO 2018
    olympics_9 V nasledujúcom príklade na sčítanie predstavujú rovnaké písmená rovnaké cifry, rôzne písmená rôzne cifry: RATAM RAD -------------- ULOHY Nahraďte písmená ciframi tak, aby bol príklad správne. Nájdite dve rôzne nahradenia.
  10. Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  11. Prvočísla 2
    prime_table Ktorými prvočíslami je deliteľné číslo 2014?
  12. Po nastúpeni
    ziacka_8 Po nastúpeni do dvojstupu, trojstupu, štvorstupu a osemstupu nikto nezostal nezaradený. Koľko žiakov bolo na hodine telesnej výchovy?
  13. Guľky 5
    gulky_11 Paľo, Igor a Kubo hrali guľky. Spolu mali 25 guliek. Paľo mal na začiatku o 6 guliek viac ako Kubo. Potom Igor vyhral 8 guliek od Paľa a tým mal Igor rovnaký počet guliek ako Kubo. Koľko guliek zostalo Paľovi?
  14. MO Z8 – I – 4 2018
    olympics_8 Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z karti
  15. MO C–I–1 2018
    numbers_49 Neznáme číslo je deliteľné práve štyrmi číslami z množiny {6, 15, 20, 21, 70}. Určite, ktorými.
  16. Neznáme číslo
    unknown Neznáme číslo je deliteľné práve tromi rôznymi prvočíslami. Keď tieto prvočísla porovnáme vzostupne, platí nasledujúce: • Rozdiel druhého a prvého prvočísla je polovicou rozdielu tretieho a druhého prvočísla. • Súčin rozdielu druhého a prvého prvočísla s r
  17. Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktore