Derivácia - príklady

Počet nájdených príkladov: 38

  • Na lúke
    sphere_in_cone.png Na lúke pristála kozmická loď v tvare gule s priemerom 6 m. Aby nepútali pozornosť, zakryli ju Marťankovia strechou v tvare pravidelného kužeľa. Ako vysoká bude táto strecha, aby spotreba krytiny bola minimálna?
  • Megapizza
    pizza Megapizza bude rozdelená medzi 100 ľudí. 1. dostane 1%, 2. 2% zo zvyšku, 3. 3% zo zvyšku atď. Posledné 100. 100% zo zvyšku. Ktorý človek dostal najväčšiu porciu?
  • Ivan a
    jehlan_4b_obdelnik Ivan a Katka objavili na dovolenke pravidelný ihlan, ktorého podstavou bol štvorec so stranou 230 m a ktorého výška bola rovná polomeru kruhu s rovnakým obsahom ako podstavný štvorec. Katka označila vrcholy štvorca ABCD. Ivan vyznačil na priamke spájajúce
  • Smernica
    lines Ktorá z funkcii je rastúca? a) y=2-x b) y=20 c) y=(x+2). (-5) d) y=x-2
  • Plášť
    kuzel2 Plášť kužeľa je vytvorený zvinutím kruhového výseku s polomerom 1. Pre aký stredový uhol daného kruhového výseku bude objem vzniknutého kužeľa maximálnu?
  • 352/5000 Strelec
    terc 352/5000 Strelec strieľa do terča, pričom predpokladáme, že jednotlivé výstrely sú navzájom nezávislé a pravdepodobnosť zásahu je u každého z nich 0,2. Strelec strieľa tak dlho, kým prvýkrát terč nezasiahne, potom streľbu ukončí. (A) Aký je najpravdepodob
  • Derivačný príklad
    derive Súčet dvoch čísel je 12. Nájdite tieto čísla, ak: a) Súčet ich tretích mocnín je minimálna. b) Súčin jedného s treťou mocninou druhého je maximálna. c) Obe sú kladné a súčin jedného s druhou mocninou druhého je maximálna.
  • Simplexová metóda
    tv Reťazec obchodných domov plánuje investovať do televíznej reklamy až 24 000 Eur. Všetky reklamné spoty budú umiestnené na televíznej stanici, na ktorej odvysielanie 30 sekundového spotu stojí 1000 Eur a sleduje ho 14 000 potenciálnych zákazníkov, počas pr
  • Poklad
    max_cylinder_pyramid Skauti majú stan v tvare pravidelného štvorbokého ihlanu so stranou podstavy 4 m a výške 3 m. Do stanu potrebujú schovať valcovú nádobu s tajným pokladom. Určte polomer r (a výšku h) nádoby tak, aby mohli schovať čo nejobjemnější poklad.
  • Mimozemská loď
    cube_in_sphere Mimozemská loď má tvar gule o polomere r = 3000m a jej posádka potrebuje loďou odviezť nazbieraný výskumný materiál v boxe v tvare kvádra so štvorcovou podstavou. Určte dĺžku podstavy a (a výšku h) tak, aby mal box najväčší možný objem.
  • Polohový 2
    speed2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (1 + 5t + 2t2 ; 3t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v ča
  • Polohový 3
    vectors2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (t2+ 2t + 1 ; 2t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v čase
  • Vektory 5
    speed2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (2t + 3t2; 6t + 3), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v čase t
  • Polohový vektor
    speed Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (6t2+ 4t ; 3t + 1) kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v čase t =
  • V rekreačnej
    bazen V rekreačnej oblasti sa má postaviť bazén v tvare kvádra s objemom 200m3. Jeho dĺžka má byť 4- násobkom šírky, pričom cena 1 m2 dna bazéna je 2- krát lacnejšia ako 1 m2 steny bazéna. Aké rozmery musí mať bazén, aby stavba bola najlacnejšia?
  • Pacientovi
    drugs Pacientovi bol podaný liek a t hodín po podaní nameraná koncentrácia v pečeni: c(t)= -0,025 t2 + 1,8t. Kedy bude liek z pečene úplne eliminovaný?
  • Nádoba 9
    valec2 Hore otvorená nádoba tvaru valca má objem V = 3140 cm3. Určite rozmery valca (r, v) tak, aby na vytvorenie tejto nádoby sa minulo najmenej materiálu.
  • Rebrík
    rebrik 4m rebrík sa dotýka kocky 1mx1m postavené pri stene. Ako vysoko na stene dosiahne?
  • Bazén
    basen Zistite rozmery otvoreného bazénu so štvorcovým dnom s objemom 32 m3 tak, aby na vymurovanie jeho stien a dna bolo treba najmenšie množstvo materiálu.
  • Minimum
    derive Nájdite také kladné číslo, aby súčet tohto čísla a jeho prevrátenej hodnoty bol minimálny.

Máš zaujímavý príklad alebo úlohu, ktorý nevieš vypočítať? Vlož úlohu a my Ti ju skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.