Prirodzené čísla - slovné úlohy a príklady - strana 41 z 79
Počet nájdených príkladov: 1567
- Z9 – I – 1 MO 2019
Ondro, Maťo a Kubo sa vracajú zo zbierania orechov, dokopy ich majú 120. Maťo sa sťažuje, že Ondro má ako vždy najviac. Otec prikáže Ondrovi, aby prisypal zo svojho Maťovi tak, aby mu počet orechov zdvojnásobil. Teraz sa sťažuje Kubo, že najviac má Maťo. - Vierka 3 MO Z8
Vierka z troch daných číslic zostavovala navzájom rôzne trojmiestne čísla. Keď všetky tieto čísla sčítala, vyšlo jej 1221. Aké číslice Vierka použila? Určte päť možností - Pozemok 14
Pozemok, ktorý má rozmery 220 m a 308 m, chce majiteľ rozdeliť na rovnako veľké štvorcové parcely s čo najväčšou výmerou. Aká dlhá bude jedna strana parcely? - Koľko 94
Koľko stromov je vysadených v parku tvaru lichobežníka so základňami 35,7m, 13,3m, ramenami 20m a 22m a výškou 19m, ak jeden stromom potrebuje 9m²? - Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č - Pážata MO Z6-I-4
Raz si kráľ zavolal všetky svoje pážatá a postavil ich do radu. Prvému pážaťu dal určitý počet dukátov, druhému dal o dva dukáty menej, tretiemu opäť o dva dukáty menej a tak ďalej. Keď došiel k poslednému pážaťu, dal mu príslušný počet dukátov, otočil sa - MO 2019 Z9–I–5
Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka - Z9-I-6 MO 2017
Na priamke predstavujúcej číselnú os uvážte navzájom rôzne body zodpovedajúce číslam a, 2a, 3a + 1 vo všetkých možných poradiach. Pri každej možnosti rozhodnite, či je také usporiadanie možné. Ak áno, uveďte konkrétny príklad, ak nie, zdôvodnite prečo. - Riešime K
Na začiatku máme štvorec 12x12 políčok. Tento štvorec následne rozdeľte na ľubovoľný počet obdĺžnikov, pričom musí platiť jediné pravidlo, že sa v ňom nesmú nachádzať dva obdĺžniky s rovnakými rozmermi. Následne pre toto rozdelenie vypočítame číslo K, pri - MO Z8–I–3 - 2017 - Adelka
Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na - Z5 – I – 5
Tomáš dostal deväť kartičiek, na ktorých boli nasledujúce čísla a matematické symboly matematická olympiáda výsledky. 18, 19, 20, 20, +, -, x, (, ) Pozn. 4 čísla a operátory plus, mínus, krát, ľavá zátvorka, pravá zátvorka. Kartičky ukladal tak, že vedľa - Z7–I–1 MO 2018
Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné - Betka
Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skla - MO 2019 Z8–I–4
Pre päticu celých čísel platí, že keď k prvému pripočítame jednotku, druhé umocníme na druhú, od tretieho odčítame trojku, štvrté vynásobíme štyrmi a piate vydelíme piatimi, dostaneme zakaždým ten istý výsledok. Nájdite všetky také pätice čísel, ktorých s - Z6–I–1 MO 2018
Ivan a Mirka sa delili o hrušky v mise. Ivan si vždy berie dve hrušky a Mirka polovicu toho, čo v mise ostáva. Takto postupne odoberali Ivan, Mirka, Ivan, Mirka a nakoniec Ivan, ktorý vzal posledné dve hrušky. Určite, kto mal nakoniec viac hrušiek a o koľ - Vláčik
Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným va - Štvorcové čísla
Nakresli 2 kamienkové štvorce. Spolu majú 34 kamienkov. Aké hrany majú dané štvorce? - Ťava
Majiteľ ťavy sa chce dostať z mesta do oázy. V meste totiž nakúpil 3000 banánov, ktoré chce v oáze predať. Avšak oázu od mesta delí 1000 kilometrov púšte. Ťava dokáže naraz niesť až 1000 banánov a na každý kilometer, ktorý urazí, jeden banán zožerie. Maji - Z9 – I – 6 2018 MO
Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dv - Kŕdle vtákov
Okolo prechádzajú kŕdle vtákov a jeden vták na strome sa ich pýta, koľko vás všetkých? a oni odpovedajú, je nás tak veľa, druhý kŕdel vtákov opäť prelieta okolo a pýtajú sa pri vtákovi na strome, koľko vás je všetkých, a odpovedajú, že sme polovica (1/2)
Máš príklad, ktorý si tu nenašiel vyriešenú? Pošli nám príklad a my Ti ho skúsime vypočítať.
