MO 2019 Z9–I–5

Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vytvorila jedno trojciferné komické a jedno trojciferné veselé číslo, pričom šesť použitých cifier bolo navzájom rôznych a nebola medzi nimi 0. Súčet týchto dvoch čísel bol 1617. Súčin týchto dvoch čísel končil dvojčíslím 40.

Určte Majkine čísla a dopočítajte ich súčin.

Správny výsledok:

a2 =  672
b2 =  945
s2 =  635040

Riešenie:

 a2=672 b2=945  x2=a2+b2=672+945=1617 y2=a2 b2=672 945=635040
b2=945
s2=a2 b2=672 945=635040



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 4 komentáre:
#
Jetammensiachyba
ale 645 a 972 nesplnaju podmienku o komickych a veselych cislach

10 mesiacov  4 Likes
#
Žiak
645 splna podmienku veseleho cisla (zaciatocna cifra od lava je parna)
972 splna podmienku komickeho cisla (zaciatocna cifra od lava je neparna)
Ja si myslim ze podmienky splnaju

#
Dr Math
mate pravdu 645 a 972 sa nestriedaju parne/neparne. Preto je len jedno riesenie

avatar










 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3

Ďaľšie podobné príklady a úlohy:

  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
  • Richardove čísla Z8-I-2 2019
    numbers2 Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich roz
  • Betka
    numbers_2 Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a sklad
  • Z9 – I – 6 2018 MO
    numbers2_49 Prirodzené číslo N nazveme bombastické, ak neobsahuje vo svojom zápise žiadnu nulu a ak žiadne menšie prirodzené číslo nemá rovnaký súčin cifier ako číslo N. Peter sa najskôr zaujímal o bombastické prvočísla a tvrdil, že ich nie je veľa. Vypíšte všetky dv
  • MO Z8 – I – 4 2018
    olympics_8 Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z kart
  • Test 14
    test_3 Podľa istého princípu sme rozdelili trojciferné prirodzené čísla do dvoch skupín: Do 1. skupiny patria napríklad čísla: 158, 237, 689, 982, 731, 420, . .. Do 2. skupiny patria napríklad čísla: 244, 385, 596, 897, … Odhaľte princíp rozdelenia a rozhodnite,
  • MO Z8-I-2 2012
    numbers Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
  • Z6–I–5 MO 2018
    olympics_9 V nasledujúcom príklade na sčítanie predstavujú rovnaké písmená rovnaké cifry, rôzne písmená rôzne cifry: RATAM RAD -------------- ULOHY Nahraďte písmená ciframi tak, aby bol príklad správne. Nájdite dve rôzne nahradenia.
  • Pomocou 3
    numbers_3 Pomocou číslic 3, 4, 5, 6 napíš všetky párne čísla. Koľko takýchto čísel vieš napísať, keď sa číslice môžu opakovať?
  • Šesťciferné prvočísla
    numberline_1 Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
  • Štvorciferné čísla
    numberline Nájdite štvorciferné čísla, kde všetky číslice sú rôzne. Pre čísla platí, že súčet tretej a štvrtej číslice je dvakrát väčší ako súčet prvých dvoch číslic a súčet prvej a štvrtej číslice je rovný súčtu druhej a tretej číslice. Číslice 0 nesmie byt na prve
  • Futbalisti
    pizza_7 Do pizzerie prišlo 30 futbalistov. Práve prebiehala akcia na objednávku pizze: „Ak si objednáte 2 pizze, tretiu dostanete zadarmo“. Futbalisti si objednali toľko pízz, aby sa každému ušla 1 pizza. Za koko pízz zaplatili, ak využili podmienky akcie?
  • Pri stole
    family_1 Pri stole je 8 stoliciek a na kazdej sedi naj viac jedno dieťa. Dievčat je 2-krát viac ako chlapcov. Koľko môže byť dievčat a koľko chlapcov?
  • Autíčka
    numbers2_13 Pavel má zbierku autíčok. Chcel je novo usporiadať do skupín. Ale pri delení po troch, po štyroch, po šiestich i po ôsmich mu vždy jedno zostalo. Až keď tvoril skupiny po siedmich, rozdelil všetky. Koľko autíčok v zbierke?
  • Domček Z9–I–5
    Mysky Myšky si postavili podzemný domček pozostávajúci z komôrok a tunelkov: • každý tunel vedie z komôrky do komôrky (tzn. žiadny nie je slepý), • z každej komôrky vedú práve tri tunely do troch rôznych komôrok, • z každej komôrky sa dá tunelom dostať do ktor
  • Raňajky
    medy Anna si pripravuje na raňajky - pohankovu alebo pšenovú kašu s jedným z troch druhov ovocia ochutenú medom alebo kakaom. Kolko rôznych druhov raňajok si môže pripraviť z uvedených surovín?
  • Guľky 5
    gulky_11 Paľo, Igor a Kubo hrali guľky. Spolu mali 25 guliek. Paľo mal na začiatku o 6 guliek viac ako Kubo. Potom Igor vyhral 8 guliek od Paľa a tým mal Igor rovnaký počet guliek ako Kubo. Koľko guliek zostalo Paľovi?