Richardove čísla Z8-I-2 2019
Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich rozdiel začína číslom 2 a končí dvojčíslím 11. Určte Richardove čísla.
Správny výsledok:
Správny výsledok:

Zobrazujem 1 komentár:

Dobrý Žiak
Akože ako by som na to mal prísť bez skúšania ktoré by mi v podstate trvalo viac ako nekonečnosť??
11 mesiacov 4 Likes
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Ďaľšie podobné príklady a úlohy:
- Z9–I–3 MO 2019
Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
- Z5–I–6 MO 2017
Na stole ležalo osem kartičiek s číslami 2,3,5,7,11,13,17,19. Fero si vybral tri kartičky. Sčítal na nich napísané čísla a zistil, že ich súčet je o 1 väčší ako súčet čísel na zvyšných kartičkách. Ktoré kartičky mohli zostať na stole? Určte všetky možnost
- MO 2019 Z9–I–5
Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka
- Z6 – I – 6 MO 2019
Majka skúmala viacciferné čísla, v ktorých sa po jednej striedajú nepárne a párne cifry. Tie, ktoré začínajú nepárnou cifrou, nazvala komické a tie, ktoré začínajú párnou cifrou, nazvala veselé. (Napr. Číslo 32387 je komické, číslo 4529 je veselé. ) Medzi
- Vláčik
Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakom. Vlak mal tri vagóny a v každom sa viezla práve tri čísla. Číslo 1 sa viezlo v prvom vagóne a v poslednom vagóne boli všetky čísla nepárne. Sprievodcovia cestou spočítal súčet čísel v prvom, druhom i posledným va
- Z7–I–6, výstava mačiek
Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka
- Súčet dvoch prvočísel
Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
- Obdĺžnik - kto má pravdu
Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto
- Z9–I–4 MO 2017
Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č
- Reštaurácia
U neskrotného diviaka mali pred bitkou tridsať stolov označených prirodzenými číslami 2 až 31. Práve dva stoly patrili do salónika. Aby personál pri inventúre zistil, ktoré dva to sú, používal trik. Na dverách salónika bola tabuľka s číslom, ktoré nebolo
- Úžasné číslo
Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
- MO C-I-3 2019
Určte všetky dvojice prirodzených čísel A a B, pre ktoré platí, že súčet dvojnásobku najmenšieho spoločného násobku a trojnásobku najväčšieho spoločného deliteľa prirodzených čísel A a B je rovný ich súčinu.
- Vypíše
Vypíše všetky nepárne 2-ciferné prirodzené čísla zostavené z cifier 1; 3; 4; 6; 8, ak sa cifry neopakujú.
- Rozdiel najmenšieho
Vypočítaj rozdiel najmenšieho nepárneho štvorciferného a najväčšieho párneho trojciferného čísla, kde každé číslo, môže byť vytvorené len z týchto číslic : 0, 1, 3, 5, 7, 8, 9 bez opakovania cifier.
- Roboti Z7
V škole pre robotov do jednej triedy chodí dvadsať robotov Robertov, ktorí sú očíslovaní Robert 1 až Robert 20. V triede je práve napätá atmosféra, rozprávajú sa spolu iba niektorí roboti. Roboti s nepárnym číslom sa nerozprávajú s robotmi s párnym číslom
- Osemsten súčet
Na každej stene pravidelného osemstenu je napísané jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, pričom na rôznych stenách sú rôzne čísla. Pri každej steny Janko určil súčet čísla na nej napísaného s číslami troch susedných stien. Takto dostal osem súčtov, ktoré
- C – I – 6 MO 2018
Nájdite všetky trojciferné čísla n s tromi rôznymi nenulovými ciframi, ktoré sú deliteľné súčtom všetkých troch dvojciferných čísel, ktoré dostaneme, keď v pôvodnom čísle vyškrtneme vždy jednu cifru.