Betka

Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu.
Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skladalo sa iba z cifier mysleného čísla (avšak nemuselo obsahovať všetky jeho cifry). Erike sa Betkino číslo zapáčilo a chcela nájsť iné číslo s rovnakými vlastnosťami. Zistila, že neexistuje menšie také číslo ako
Betkino a väčšie sa jej hľadať nechcelo. Určte, aké číslo si myslela Betka a aké číslo by mohla nájsť Erika, keby mala viac trpezlivosti.

Správny výsledok:

b =  1032
e =  2301

Riešenie:

1032+2301=3333



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 1 komentár:
#
Peter2
Nápoveda. Zvážte postupne možnosti, kedy je myslené číslo jednomiestne, dvojmiestne atď. V jednotlivých prípadoch premýšľajte postupne nad možnými súčty na mieste jednotiek, desiatok atď.

Možné riešenie. Najprv nájdeme Betkine  číslo, tj. najmenšie číslo s uvedenými vlastnosťami.
1) Predpokladajme, že Betkine číslo je jednomiestne, a označíme si ich a. Potom by podľa zadania muselo platiť a + a = a, čo platí len v prípade a = 0. Nula však nie je prirodzené číslo, takže Betkine myslenej číslo nemôže byť jednomiestne.
2) Predpokladajme, že Betkine číslo je dvojmiestne, a označíme si ich ab. Či už súčet ab + ba dopadne akokoľvek, na mieste jednotiek čítame buď b + a = a, alebo b + a = b. Odtiaľ dostávame buď b = 0, alebo a = 0. V takom prípade by však buď číslo ba, alebo číslo ab nebolo dvojciferné. Betkine myslené číslo teda nemôže byť dvojmiestne.
3) Predpokladajme, že Betkine číslo je trojmiestne, a označíme si ich abc. Z rovnakého dôvodu ako vyššie nemôžu byť čísla aac nuly, teda v súčte abc + cba sa na mieste jednotiek môže objaviť jedine b:
a b c
c b a
____
* * b
Súčasne c + a nemôže byť väčšia ako 9, pretože potom by celkový súčet abc + cba nebol trojmiestny. Odtiaľ sa dozvedáme, že a + c = b čo okrem iného znamená, že ani číslica b nemôže byť 0. Odtiaľ vyplýva, že súčet b + b na mieste desiatok nemôže byť menšia ako 10; v takom prípade by tento súčet bol rovný jednému z čísel a, b, c, čo vždy vedie k nejakému sporu s predchádzajúcimi poznatkami:
Ak b + b = a alebo b + b = c, potom podľa (1) dostávame 2a + 2c = a alebo 2a + 2c = c, teda a = -2C alebo c = -2a, čo nie je možné.
• Ak b + b = b, potom b = 0, čo nie je možné.
Súčet b + b na mieste desiatok však nemôže byť ani väčšia než 9. V takom prípade by súčet na mieste stoviek bol a + c + 1 a toto číslo má byť presne jednému z čísel a, b, c; to vždy vedie k nejakému sporu:
• Ak a + c + 1 = a alebo a + c + 1 = c, potom c = -1 alebo a = -1, čo nie je možné.
• Ak a + c + 1 = b, potom podľa (1) dostávame b + 1 = b, teda 1 = 0, čo nie je možné.
Betkine myslené číslo teda nemôže byť ani trojmiestne.
4) Predpokladajme, že Betkine číslo je štvormiestne, a označíme si ich abcd. Z rovnakého dôvodu ako vyššie nemôžu byť čísla aad nuly, teda v súčte abcd + dcba sa na mieste jednotiek môže objaviť buď b, alebo c:
a b c d
d c b a
----------
* * * b

a b c d
d c b a
----------
* * * c
Súčasne d + a nemôže byť väčšia ako 9, pretože potom by celkový súčet abcd + DCBA nebol štvormiestny. Odtiaľ sa dozvedáme, že
buď a + d = b, (dalej len 2)
alebo a + d = c. (dalej len 3)
To okrem iného znamená, že buď b <> 0, alebo c <> 0.
Teraz predpokladáme, že súčet c + b na mieste desiatok je menšia ako 10, tzn. tento súčet je rovný jednému z čísel a, b, c, d, a preskúmame jednotlivé prípady. Najprv uvažujme platnosť (2), a teda b <> 0:
• Ak b + c = a alebo b + c = d, potom podľa (2) dostávame a + d + c = a alebo a + d + c = d, teda c = -d alebo c = -a, čo nie je možné .
• Ak b + c = b, potom c = 0 (čo ničomu nevadí).
• Ak b + c = c, potom b = 0, čo nie je možné.
Podobne, za predpokladu (3) zistíme, že jediná prípustná možnosť je b + c = c, teda b = 0
Celkom tak objavujeme dva možné prípady:
a b 0 d
d 0 b a
----------
b b b b
a 0 c d
d c 0 a
----------
c c c c
Pretože Betkine číslo je najmenšie číslo vyhovujúce všetkým uvedeným podmienkam, vôbec sa nemusíme zaoberať prípadom, kedy súčet c + b je väčší ako 9, a sústredíme sa výhradne na druhú z vyššie menovaných možností, tj. B = 0. Dosadíme najmenšie možné číslo na miesto tisícok a = 1 a zisťujeme, že c = d + 1. Najmenší vyhovujúce možnosť je d = 2 ac = 3. Betka si teda hrala s číslom 1032 a jej výpočet vyzeral takto:
1 0 3 2
2 3 0 1
----------
3 3 3 3
Z vyššie uvedeného je teraz jednoduché doplniť nejaké iné číslo s uvedenými vlastnosťami, teda nejaké Eričino číslo. Napr. stačí v Bětčině čísle zameniť číslica na mieste jednotiek a tisícoviek alebo číslice na mieste desiatok a stoviek, príp. uvažovať akékoľvek čísla tvaru (4). Medzi možnými riešeniami sú tiež čísla, kedy súčet c + b je väčšia než 9. Tu je niekoľko riešení, na ktoré mohla Erika prísť, keby nebola však tak netrpezlivá:
1 0 4 3
3 4 0 1
----------
4 4 4 4
1 3 0 2
2 0 3 1
----------
3 3 3 3
1 8 9 7
7 9 8 1
----------
9 8 7 8
Poznámky. a) Ak vieme zdôvodniť, že hľadané Betkine číslo musí byť aspoň štvormiestne, potom je možné ľahko nájsť skúšaním:
Najmenšie štvormiestne číslo s navzájom rôznymi číslicami je 1023. Toto číslo však nie je riešením, pretože 1023 + 3201 = 4224. Ak nás napadne prehodiť číslica 2 a 3, dostaneme vyhovujúce riešenie: 1032 + 2301 = 3333. Aby sme sa presvedčili, že toto riešenie je najmenšie možné, stačí overiť, že žiadne číslo medzi 1023 a 1032 nevyhovuje niektoré z uvedených podmienok.
b) Nahradenie ostatných úvah skúšaním je tiež možné, avšak často veľmi prácné. Avšak ak je riešenie založené na skúšaní úplné, nech je považované za správne.
Akékoľvek čiastkové všeobecné postrehy môžu počet možností k preskúšaniu zaujímavo znižovať (napr. Počet trojíc rôznych čísiel od 1 do 9 vyhovujúcich rovnosti (1) určite nie je väčší ako 32.

avatar










 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2

Ďaľšie podobné príklady a úlohy:

  • Úžasné číslo
    numbers4 Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
  • Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka
  • Šťastný deň
    calendar_1 Číslo dňa je poradové číslo daného dňa v príslušnom mesiaci (teda napr. číslo dňa 5. augusta 2016 je 5). Ciferný súčet dňa je súčet hodnôt všetkých cifier v dátume tohto dňa (teda napr. ciferný súčet dňa 5. augusta 2016 je 5+8+2+0+1+6 = 22). Šťastný deň j
  • Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné
  • Obdĺžnik - kto má pravdu
    mo_1 Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto
  • Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
  • Na papieri
    number_line Na papieri bolo napísaných niekoľko kladných celých čísel. Miška si pamätala iba to, že každé číslo bolo polovicou súčtu všetkých ostatných čísel. Koľko čísel mohlo byť napísaných na papieri?
  • Číselná os
    osa V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2
  • Štvorcová sieť
    sit Štvorcová sieť sa skladá zo štvorca so stranou dĺžky 1cm. Narysujte do nej aspoň tri rôzne obrazce také, aby každý mal obsah 6 cm2 a obvod 12cm a aby ich strany splývali s priamkami siete.
  • MO Z9-I-3 2018
    cinema2_14 V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a v
  • C – I – 3 MO 2018
    olympics_10 Nech a, b, c sú kladné reálne čísla, ktorých súčet je 3, a každé z nich je nanajvýš 2. Dokážte, že platí nerovnosť: a2 + b2 + c2 + 3abc < 9
  • Klávesy
    klavesy Miško mal na poličke malé klávesy, ktoré vidíte na obrázku. Na bielych klávesoch boli vyznačené ich tóny. Klávesy našla malá Klára. Keď ich brala z poličky, vypadli jej z ruky a všetky biele klávesy sa z nich vysypali. Aby sa brat nehneval, začala je Klár
  • MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
  • MO Z7–I–3 2019
    olympics Roman má rád kúzla a matematiku. Naposledy čaroval s trojcifernými alebo štvorcifernými číslami takto: • z daného čísla vytvoril dve pomocné čísla tak, že ho rozdelil medzi ciframi na mieste stoviek a desiatok (napr. Z čísla 581 by dostal 5 a 81), • pomoc
  • MO Z8-I-1 2018
    age_6 Fero a Dávid sa denne stretávajú vo výťahu. Raz ráno zistili, že keď vynásobia svoje súčasné veky, dostanú 238. Keby to isté urobili za štyri roky, bol by tento súčin 378. Určte súčet súčasných vekov Fera a Dávida.
  • Pážata MO Z6-I-4
    coins Raz si kráľ zavolal všetky svoje pážatá a postavil ich do radu. Prvému pážaťu dal určitý počet dukátov, druhému dal o dva dukáty menej, tretiemu opäť o dva dukáty menej a tak ďalej. Keď došiel k poslednému pážaťu, dal mu príslušný počet dukátov, otočil sa
  • Dcéry
    family_3 Muž vykonávajúci sčítanie ľudu sa pýta ženy na starobu ich troch dcér. Žena hovorí: Vynásobte ak ich vek, dostanete číslo 72; ak ich vek spočítate, dostanete číslo nášho domu, ktoré vidíte. Muž hovorí: To mi na výpočet ich veku nestačí. Žena hovorí: Moja