Z9-I-4

Katka si myslela päťciferné prirodzené číslo. Do zošita napísala na prvý riadok súčet mysleného čísla a polovice mysleného čísla. Na druhý riadok napísala súčet mysleného čísla a pätiny mysleného čísla. Na tretí riadok napísala súčet mysleného čísla a devätiny mysleného čísla. Nakoniec spočítala všetky tri zapísaná čísla a výsledok napísala na štvrtý riadok. Potom s úžasom zistila, že na štvrtom riadku má zapísanú tretiu mocninu istého prirodzeného čísla.

Určte najmenšie číslo, ktoré si Katka mohla myslieť na začiatku.

Správny výsledok:

n =  11250

Riešenie:

9999<n<100000 n=11250 l1=n+n/2=11250+11250/2=16875 l2=n+n/5=11250+11250/5=13500 l3=n+n/9=11250+11250/9=12500 l4=l1+l2+l3=16875+13500+12500=42875 l5=353=42875 n=11250



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 3 komentáre:
#
Žiak
DAds

#
Žiak
dalo by sa to ešte raz vysvetliť? nepochopil som tomu ako ste sa dostali k výsledku? ďakujem

#
Žiak
Nepochopila jsem jak se z těch 35 stane 11250 protože 35na třetí není 11250

avatar









Tipy na súvisiace online kalkulačky
Riešite Diofantovské problémy a hľadáte kalkulačku diofantovských celočíselných rovníc?

 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1   video2   video3

Ďaľšie podobné príklady a úlohy:

  • Ovce
    ships Pastier pásol ovce. Turisti sa ho pýtali, koľko ich má. Pastier povedal: „ Je ich menej ako 500. Keby som ich zoradil do štvorradu tri by mi ostali. Keby do päťradu ostali by mi štyri a ak do šesť radu, ostane ich 5. Môžem ich však zoradiť do sedem radu.
  • Z9–I–1 2018 čísla
    hyperbola_1 Nájdite všetky kladné celé čísla x a y, pre ktoré platí: 1/x + 1/y = 1/4 .
  • Z7-I-4 MO 2017
    math_mo_2 Na stole ležalo šesť kartičiek s ciframi 1, 2, 3, 4, 5, 6. Anežka z týchto kartičiek zložila šesťciferné číslo, ktoré bolo deliteľné šiestimi. Potom postupne odoberala kartičky sprava. Keď odobrala prvú kartičku, zostalo na stole päťciferné číslo deliteľn
  • Tretiu s druhou
    sqrt_1 Máme 2 čísla. Keby sme vynásobili tretiu odmocninu prvého čísla s druhou odmocninou druhého čísla, dostali by sme číslo 18.Určte tieto 2 čísla. Ak má úloha v množine reálnych čísel nekonečne veľa riešení, vypočítajte len celočíselné riešenie.
  • MO Z7–I–3 2019
    olympics Roman má rád kúzla a matematiku. Naposledy čaroval s trojcifernými alebo štvorcifernými číslami takto: • z daného čísla vytvoril dve pomocné čísla tak, že ho rozdelil medzi ciframi na mieste stoviek a desiatok (napr. Z čísla 581 by dostal 5 a 81), • pomoc
  • MO Z8 – I – 4 2018
    olympics_8 Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z kart
  • Šesťciferné prvočísla
    numberline_1 Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
  • Cukríky MO Z6-I-5 2017
    cukriky_10 V plechovke boli červené a zelené cukríky. Cyril zjedol 2/5 všetkých červených cukríkov a Zuzka zjedla 3/5 všetkých zelených cukríkov. Teraz tvoria červené cukríky 3/8 všetkých cukríkov v plechovke. Koľko najmenej cukríkov mohlo byť pôvodne v plechovke?
  • Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  • Stonožka
    mnohonozky.JPG Stonožka Mirka pozostáva z hlavy a niekoľkých článkov, na každom článku má jeden pár nôh. Keď sa ochladilo, rozhodla sa, že sa oblečie. preto si na treťom článku od konca a potom na každom ďalšom treťom článku obliekla ponožku na ľavú nôžku. Podobne si na
  • Z9–I–1
    ctverec_mo Vo všetkých deviatich poliach obrazca majú byť vyplnené prirodzené čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použité aspoň raz, • štyri z polí vnútorného štvorca obsahujú súčiny čísel zo susediacich polí vonkajšieho štvorca, • v kruhu je súče
  • Z7–I–4 2018 MO Betka
    gears_mo Betka sa hrala s ozubenými kolesami, ktoré ukladala tak, ako je naznačené na obrázku. Keď potom zatočila jedným okolo, točili sa všetky ostatné. Nakoniec bola spokojná so súkolesím, pričom prvé koleso malo 32 a druhé 24 zubov. Keď sa tretie koleso otočilo
  • Richardove čísla Z8-I-2 2019
    numbers2 Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich roz
  • MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
  • V hoteli 2
    hotel-montfort-tatry-2_2 V hoteli Holiday majú na každom poschodí rovnaký počet izieb. Izby sú číslované prirodzenými číslami postupne od prvého poschodia, žiadne číslo nie je vynechané a každá izba má iné číslo. Do hotela pricestovali traja turisti. Prvý sa ubytoval v izbe číslo
  • Myslím
    numbers_49 Myslím si číslo. Keď ho vynásobím piatimi a potom od výsledku odčítam 477, dostanem to isté číslo, ako keby som ho na začiatku násobil dvoma. Ktoré číslo si myslím?
  • Snehulienka 2019 MO Z7
    snehulienka Snehulienka so siedmimi trpaslíkmi nazbierali šišky na táborák. Snehulienka povedala, že počet všetkých šišiek je číslo deliteľné dvoma. Prvý trpaslík prehlásil, že je to číslo deliteľné tromi, druhý trpaslík povedal, že je to číslo deliteľné štyrmi, tret