Z9-I-4

Katka si myslela pětimístné přirozené číslo. Do sešitu napsala na první řádek součet myšleného čísla a poloviny myšleného čísla. Na druhý řádek napsala součet myšleného čísla a pětiny myšleného čísla. Na třetí řádek napsala součet myšleného čísla a devítiny myšleného čísla. Nakonec sečetla všechna tři zapsaná čísla a výsledek napsala na čtvrtý řádek. Poté s úžasem zjistila, že na čtvrtém řádku má zapsánu třetí mocninu jistého přirozeného čísla.

Určete nejmenší číslo, které si Katka mohla myslet na začátku.

Správná odpověď:

n =  11250

Postup správného řešení:

9999<n<100000 n=11250 l1=n+n/2=11250+11250/2=16875 l2=n+n/5=11250+11250/5=13500 l3=n+n/9=11250+11250/9=12500 l4=l1+l2+l3=16875+13500+12500=42875 l5=353=42875 n=11250=11250



Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 19 komentářů:
#
Žák
Jak jste došli k prvnímu číslu n=11250? Děkuji :)

5 let  2 Likes
#
Www
staci jet od cisla 10000 co je prvni 5-ti mistne cislo a testovat ho ci splna "vlastnosti"....

druha moznost je vypocitet treti odmocninu z 10000 = 21.544346 cize zacat od 223 , 233 az po 353 (co je jen 13 vyskusani vysledku)

#
Žák
A nešlo by nějak matematicky vypočítat n? A ne ho pouze na začátku odhadnout?

5 let  1 Like
#
Žák
myslim ze neuplne reseni podpori Vasi kreativitu a na neco taky prijidete sami a budete se tesit... Ulohy MO nejsu ze stahnu z internetu a vsichni do tydne odovzdaji stejne reseni....

Hodne pile!

5 let  2 Likes
#
Tekysk
sewa :::) mas rozhodne pravdu :) a ale tak no ,,, kazdy svoje pochody a my ich nezmenime :)

4 roky  1 Like
#
Týna
Kde jsi přišel na 35 na třetí? Jako, kde jsi to vzal? A proč si myslíš, že to bude zrovna tohle číslo? Děkuji za odpověď.

#
Dr Math
Zde je počítačem vygenerované řešení
10000 = 33.6525, 10001 = 33.6533, 10002 = 33.6545, 10003 = 33.6557, 10004 = 33.6569, 10005 = 33.6581, 10006 = 33.6589, 10007 = 33.6601, 10008 = 33.6613, 10009 = 33.6625, 10010 = 33.6636, 10011 = 33.6648, 10012 = 33.6657, 10013 = 33.6669,

... skratil admin stranky  doktor matematiky...

34.9834, 11235 = 34.9842, 11236 = 34.9853, 11237 = 34.9864, 11238 = 34.9875, 11239 = 34.9886, 11240 = 34.9894, 11241 = 34.9905, 11242 = 34.9916, 11243 = 34.9927, 11244 = 34.9937, 11245 = 34.9946, 11246 = 34.9956, 11247 = 34.9967, 11248 = 34.9978, 11249 = 34.9989, 11250 = 35 Trvalo to asi 35 sekund

5 let  2 Likes
#
Žák
V jakém programu to je ?

#
žák
A do listu, který bude odevzdávat napíšete, že vám výsledek vygeneroval počítač ??

4 roky  1 Like
#
Www
no ano a mikrosekundu by trvalo vyskusat 13 cisel ci vyhovuje.... resp. 4 minuty na kalkulacce

#
Žák
Jde to samozřejmně i pomocí rovnic a úvah. Kdo chce ale dělat MO by na tohle měl přijít sám.

4 roky  1 Like
#
žák
Takže matematický vzorec pro tuto úlohu neexistuje ??

#
žák
Počítal jsem takto:
x + x/2 + x + x/5 + x + x/9 = y³ (- na třetí)
343/90 = y³             / *90
343x = y³ * 90         / ³√ (- třetí odmocnina)
3,81x =³√ (y³ * 90)
x = (³√ (y * 90)) / 3,81
A jak teď zjistit "x", pokud na druhé straně mám další nevyjádřenou... ?

#
Žák
nebo si můžeš x vyjádřit jako x=(y³*90)/343

#
Pomocník
Hledáte nejnižší pětimístné číslo a máte určit nejmenší číslo, které si Katka mohla myslet, to číslo musí být na třetí, takže můžete zkoušet, třeba 203=8000, stále není pětimístné, tak zkusíte 213=9261, potom zkusíte 223=10648, to je nejnižší pětimístné číslo na třetí, takže odpověď je 22, nikoli 35.

4 roky  1 Like
#
Žák
Ale to číslo na konci není to číslo, které si katka myslela - na třetí, je to jiné přirození číslo na třetí.

#
Žák
Když ale do řádků dosadíš 10648 tak ti výjde 40580,7111 - má být přirozené. Pak by jste nenašel 3odmocninu přirozenou.

#
Žák
Vážení, jestli chápu správně zadání, tak "n" nemůže být 11250, protože to má být součet, což by v tomto případě bylo 9.
takže bych to viděl na "x + n/2" v prvním řádku.

#
Žák
Šla jsem na výpočet takto:
Katka sečetla čísla x + x/2, x + x/5 a x + x/9 - součet je 343/90.x = n3, přičemž 343=73.
Hledané číslo x tedy musí být násobek 90 a třetí mocniny jistého čísla. Vyzkoušením zjistíme, že násobky 90 a třetí mocniny 2,3,4 nejsou pěticiferné, první pěticiferný součin dává třetí mocnina 5, tedy 90.125 = 11250

avatar







Tipy na související online kalkulačky
Řešíte Diofantovské problémy a hledáte kalkulačku diofantovských celočíselných rovnic?

Související a podobné příklady:

  • Z9 – I – 6 2018 MO
    numbers2 Přirozené číslo N nazveme bombastické, pokud neobsahuje ve svém zápise žádnou nulu a pokud žádné menší přirozené číslo nemá stejný součin číslic jako číslo N. Karel se nejprve zajímal o bombastická prvočísla a tvrdil, že jich není mnoho. Vypište všechna d
  • Dělitelnost
    divisibility Je číslo 237610 dělitelné číslem 5?
  • Bonbóny MO Z6-I-5 2017
    cukriky V plechovce byly červené a zelené bonbóny. Čeněk snědl 2/5 všech červených bonbónů a Zuzka snědla 3/5 všech zelených bonbónů. Teď tvoří červené bonbóny 3/8 všech bonbónů v plechovce. Kolik nejméně bonbónů mohlo být původně v plechovce?
  • MO 2019 Z8–I–4
    olympics Pro pětici celých čísel platí, že když k prvnímu přičteme jedničku, druhé umocníme na druhou, od třetího odečteme trojku, čtvrté vynásobíme čtyřmi a páté vydělíme pěti, dostaneme pokaždé stejný výsledek. Najděte všechny pětice čísel, jejichž součet je 122
  • MO Z8-I-2 2012
    numbers Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
  • Z7–I–4 2018 MO Betka
    gears_mo Karel si hrál s ozubenými koly, která byla sestavena do soukolí. Když zatočil jedním kolem, točila se všechna ostatní. První kolo mělo 32 a druhé 24 zubů. Když se třetí kolo otočilo (je uprostřed soukolí) přesně osmkrát, druhé kolo udělalo pět otáček a čá
  • Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čís
  • Z9–I–1 2018 čísla
    hyperbola Najděte všechna kladná celá čísla x a y, pro která platí: 1/x + 1/y = 1/4
  • MO Z8-I-1 2018
    age Ferda a David se denně potkávají ve výtahu. Jednou ráno zjistili, že když vynásobí své současné věky, dostanou 238. Kdyby totéž provedli za čtyři roky, byl by tento součin 378. Určete součet současných věků Ferdy a Davida.
  • Sklepy
    Spider-and-Fly V prvním sklepě je víc much než pavouků, ve druhém naopak. V každém sklepě měli mouchy a pavouci dohromady 100 nohou. Určete kolik mohlo být much a pavouků v prvním a kolik ve druhém sklepě. PS. Nám stačí, když napíšete kolik rěšení má tenhle úkol.
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  • Ozubené soukolí 3
    gears-3 Ozubené soukolí je sestavené ze tří ozubených kol. První má 165 zubů, druhé 132 zubů a třetí 231, přičemž druhé zapadá do prvního a třetí do druhého kola. První a třetí se nedotýká. Kolikrát za minutu budou všechna tři kola ve stejném vzájemném postavení
  • Vláček
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vagonu
  • Betka
    numbers Betka si myslela přirozené číslo s navzájem různými ciframi a napsala ho na tabuli. Pod něj zapsala cifry původního čísla odzadu a tak získala nové číslo. Sečtením těchto dvou čísel dostala číslo, které mělo stejný počet cifer jako myšleny číslo a skládal
  • Mnohonožka Z6–I–3
    mnohonozky Mnohonožka Mirka sestává z hlavy a několika článků, na každém článku má jeden pár nohou. Když se ochladilo, rozhodla se, že se obleče. proto si na třetím článku od konce a potom na každém dalším třetím článku oblékla ponožku na levou nožku. Podobně si na
  • Číslo dne
    calendar Číslo dne je pořadové číslo daného dne v příslušném měsíci (tedy např. číslo dne 5. srpna 2016 je 5). Ciferný součet dne je součet hodnot všech cifer v datu tohoto dne (tedy např. ciferný součet dne 5. srpna 2016 je 5 + 8 + 2 + 0 + 1 + 6 = 22). Šťastný de
  • Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?