Derivácia - príklady

  1. Polohový 3
    vectors2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (t2+ 2t + 1 ; 2t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v.
  2. Polohový 2
    speed2_1 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (1 + 5t + 2t2 ; 3t + 1), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu
  3. Vektory 5
    speed2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (2t + 3t2; 6t + 3), kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v.
  4. Polohový vektor
    speed_2 Polohový vektor hmotného bodu, ktorý sa pohybuje v rovine, je možné v zavedenej vzťažnej sústave vyjadriť vzťahom: r(t) = (6t2+ 4t ; 3t + 1) kde t je čas v sekundách a súradnice vektora sú v metroch. Vypočítajte: a) aká je poloha hmotného bodu v ča
  5. Guľa v kuželi
    sphere-in-cone Guľi o polomere 3 cm opíšte kužeľ minimálneho objemu. Určte jeho rozmery.
  6. Guľa a kúžel
    cone_in_sphere Do gule s polomerom G = 41 cm vpíšte kužel s najväčším objemom. Aký je tento objem a aké sú rozmery kužela?
  7. Vrh
    rocket Teleso bolo vrhnuté zvislo nahor rýchlosťou v0=79 m/s. Výšku telesa v závislosti na čase opisuje rovnica ?. Akú maximálnu výšku dosiahne teleso?
  8. Koza
    koza Je lúka tvaru kruhu r = 39 m. Ako dlhý musí byť povraz na uviazanie kozy ku kolíku na obvode lúky, aby spásla len polovicu lúky?
  9. Koberec
    koberec_2 Je miestnosť s rozmermi 10 x 5 metrov. K dispozícii máte rolku koberca-behúňa o šírke 1 meter. Pravouhlým rezom odrežte z role najdlhší možný kus koberca, ktorý je možné položiť do miestnosti. Ako dlhý kus odmeriate? Pozn.: Položený koberec nebude rovnobež
  10. Socha
    michelangelo Na podstavci vysokom 4 m stojí socha vysoká 2.7 metrov. V akej vzdialenosti od sochy sa musí pozorovateľ postaviť, aby ju videl v najväčšom zornom uhle? Vzdialenosť oka pozorovateľa od zeme je 1.7 m.
  11. Rebrík
    rebrik_4 4m rebrík sa dotýka kocky 1mx1m postavené pri stene. Ako vysoko na stene dosiahne?
  12. Derivácia
    fx Existuje funkcia, ktorej derivácia je tá istá funkcia?
  13. Bazén
    basen_5 Zistite rozmery otvoreného bazénu so štvorcovým dnom s objemom 32 m3 tak, aby na vymurovanie jeho stien a dna bolo treba najmenšie množstvo materiálu.
  14. Kúžeľ
    diag22 Do rotačného kužeľa s rozmermi - polomerom podstavy R = 8 cm a výškou H = 8 cm vpíšte valec maximálneho objemu tak, aby os valca bola kolmá na os kužeľa. Určte rozmery valca.
  15. Objem krabice
    box Tvrdý papier v tvare obdĺžnika má rozmery 60 cm a 28 cm. V rohoch sa odstrihnú rovnaké štvorce a zvyšok sa ohne do tvaru otvorenej krabice. Aká dlhá musí byť strana odstrihnutých štvorcov, aby objem krabice bol najväčší?
  16. Minimum
    derive_1 Nájdite také kladné číslo, aby súčet tohto čísla a jeho prevrátenej hodnoty bol minimálny.
  17. Obdĺžnik
    stvorec_3 Určte rozmery obdĺžnika s obvodom 24 cm, tak aby jeho povrch bol maximálny, a aby platilo, že jeho dĺžka je vačšia ako jeho šírka
  18. Nádoba 9
    valec2_6 Hore otvorená nádoba tvaru valca má objem V = 3140 cm3. Určite rozmery valca (r, v) tak, aby na vytvorenie tejto nádoby sa minulo najmenej materiálu.
  19. Rozklad
    parabola_4 Číslo 28 rozložte na dva sčítance tak, aby ich súčin bol maximálny.
  20. Derivácia spojitej
    dxdy Existuje taká funkcia, ktorá je spojitá a nemá v každom bode deriváciu?

Máš zaujímavý príklad, ktorý nevieš vypočítať? Vlož ho a my Ti ho skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.