Rovnoběžné tětivy
V kružnici s r = 26 cm jsou narýsované 2 rovnoběžné tětivy. Jedna tětiva má délku t1 = 48 cm a druhá má délku t2 = 20cm, přičemž střed leží mezi nimi. Vypočítejte vzdálenost dvou tětiv.
Správný výsledek:
Správný výsledek:

Zobrazuji 0 komentářů:
Tipy na související online kalkulačky
Chcete proměnit jednotku délky?
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Další podobné příklady a úkoly:
- Rovnoběžné tětivy
V kružnici s průměrem 70 cm jsou narýsované dvě rovnoběžné tětivy tak, že střed kružnice leží mezi tětivami. Vypočítejte vzdálenost těchto tětiv, pokud jedna z nich má délku 42 cm a druhá 56 cm.
- Kružnice
V kružnici s poloměrem 7,5 cm jsou sestrojeny 2 rovnoběžné tětivy, jejichž délky jsou 9 cm a 12 cm. Vypočítejte vzdálenost těchto tětiv (pokud jsou možné dvě řešení napište obě).
- Tětiva 4
Potřebuji vypočítat obvod kruhu, když znám délku tětivy t=11 cm a vzdálenost ode středu d=12 cm tětivy ke kružnici.
- Rovnoběžné tětivy
Dvě rovnoběžné tětivy kružnice mají stejnou délku 6 cm a jsou od sebe vzdáleny 8 cm. Vypočítejte poloměr kružnice.
- Tětiva - vzdálenost
V kružnici k (S; 6cm) vypočítejte vzdálenost tětivy t od středu kružnice S, pokud délka tětivy je t = 10cm.
- Dve tětivy
Vypočítejte délku tětivy AB a k ní kolmé tětivy BC, pokud tětiva AB je od středu kružnice k vzdálená 4 cm a tětiva BC má vzdálenost 8 cm.
- Tětiva 2
Bod A má od středu kružnice s poloměrem r = 5 cm vzdálenost 13 cm. Vypočítejte délku tětivy spojující body dotyku T1 a T2 tečen vedených z bodu A ke kružnici k.
- Tětiva
V kružnici o poloměru r = 70 cm je tětiva 10 × delší než její vzdálenost od středu. Jaká je délka tětivy?
- Tětiva
Vypočítejte délku tětivy, jejíž vzdálenost od středu S kružnice k (S, 23 cm) se rovná 12 cm.
- Tětiva 20
V kružnici s průměrem d= 10 cm, je sestrojena tětiva o délce 6 cm. Jaký poloměr by měla soustředná kružnice, která by se této tětivy dotýkala?
- Tětiva
Jakou vzdálenost mají tečna t kružnice (S, 4 cm) a tětiva této kružnice, která má délku 6 cm a je rovnoběžná s tečnou?
- Společná tětiva
Dvě kružnice s poloměry 17 cm a 20 cm se protínají ve dvou bodech. Jejich společná tětiva dlouhá 27 cm. Jaká je vzdálenost středů těchto kružnic?
- Tětiva kružnice
Vypočítejte délku tětivy kružnice o poloměru r = 10 cm, jejíž délka se rovná její vzdálenosti od středu kružnice.
- Tětiva BC
Je dána kružnice k se středem v bodě S = [0; 0]. Bod A = [40; 30] leží na kružnici k. Jak dlouhá je tětiva BC pokud střed P této tětivy má souřadnice: [- 14; 0]?
- Určete 4
Určete vzdálenost dvou rovnoběžných tětiv délek 7 cm a 11 cm v kružnici s poloměrem 7 cm
- Kružnice
Kružnice s průměrem 17cm, horní tětivou /CD/=10,2cm a dolní tětivou /EF/=7,5cm, kde pro středy tetiv H, G platí /EH/=1/2 /EF/ a /CG/=1/2 /CD/, určete vzdálenost mezi bodem G a H. CD II EF.
- Laťkový plot
Stavím laťkový plot. Latě jsou nahoře zaobleny do půlkruhu. Vršky latí v poli mezi sloupy mají kopírovat pomyslnou kružnici. Špička první a poslední latě v poli tvoří tětivu kružnice jejiž poloměr není znám. Délka tětivy je 180cm. Výška ,,oblouku" uprostř