Užasné číslo

Užasným číslem nazveme takové sudé číslo, jehož rozklad na součin prvočísel má právě tři ne nutně různé činitele a součet všech jeho dělitelů je roven dvojnásobku tohoto čísla. Najděte všechna užasná čísla.

Vaše odpověď:



Našel si chybu či nepřesnost? Klidně nám ji napiš.



Zobrazuji 7 komentářů:
#
Žák
jiné řešení to skutečně nemá ? Kdyžtak zdůvodnit :)

#
Www
Nevime o dalsim reseni. Resp. s cislami pod 100000 urcite ne. Zajima nas to taky.

#
Žák
a mohli by jste prosím zdůvodnit ?

#
Petr
To zduvodneni nas zajima taky; ide najma o to ze "součet všech jeho dělitelů" zvycejne pro velke cisla n presahne hodnotu 2n. Vezmime prvocislo. To ma soucet delitelu n+1 (ma presne 2 delitele, n a 1). Cislo n ktere ma 3 delitele a,b,c, ma soucet delitelu minimalne n+1+a+b+c+ab+ac+bc > 2n :D Ale exaktne to zduvodnit nevim a cekame ze nekto moudrejsi nam to dopovi ako to je...

#
Kvak
Nápověda. Kolik nejvíce dělitelů může mít číslo, které je součinem tří ne nutně různýchprvočísel?

Možné řešení. Protože úžasné číslo je sudé, alespoň jeden z jeho prvočíselných dělitelůje 2; zbylé dva prvočíselné dělitele označíme b a c. Úžasné číslo je tedy rovno součinu 2bc.Všichni dělitelé takového čísla jsou 1, 2, b, c, 2b, 2c, bc, 2bc, přičemž některá z těchtočísel se mohou rovnat. Postupně probereme všechny možnosti podle počtu a typu různých prvočíselných dělitelů.

a) Předpokládejme, že všichni prvočíselní dělitelé jsou stejní, tedy b = c = 2. V takovém případě by úžasné číslo bylo 8 a všichni jeho dělitelé by byli 1, 2, 4, 8. Součet všech dělitelů by byl 15, což není dvojnásobek čísla 8. Případ b = c = 2 tedy není možný.

b) Předpokládejme, že dva prvočíselní dělitelé jsou rovni 2, tedy b = 2. V takovém případě by úžasné číslo bylo 4c a všichni jeho dělitelé by byli 1, 2, c, 4, 2c, 4c. Součet všechdělitelů by byl 7 + 7c a podle zadání má platit7+7c = 8c.To platí právě tehdy, když c = 7; odpovídající úžasné číslo je 4c = 28.

c) Předpokládejme, že dva prvočíselní dělitelé jsou stejní, ovšem oba různí od 2, tedyb = c = 2. V takovém případě by úžasné číslo bylo 2b2 a všichni jeho dělitelé by byli 1, 2,b, 2b, b2, 2b2. Součet všech dělitelů by byl 3 + 3b + 3b2 a podle zadání má platit 3+3b + 3b2 = 4b2, 3(1 + b) = b2. Číslo nalevo je násobkem čísla 3, tedy číslo napravo má také být násobkem 3. Vzhledemk tomu, že b je prvočíslo, muselo by být b = 3. V takovém případě by však nalevo bylo 3 · 4 = 12, zatímco napravo 3x2 = 9. Případ b = c = 2 tedy není možný.

d) Předpokládejme, že prvočíselní dělitelé jsou navzájem různí, tedy 2 = b = c = 2. V takovém případě by úžasné číslo bylo 2bc a všichni jeho dělitelé by byli 1, 2, b, c, 2b, 2c,bc, 2bc. Součet všech dělitelů by byl 3 + 3b + 3c + 3bc a podle zadání má platit
   3+3b + 3c + 3bc = 4bc,3(1 + b + c) = bc.

Číslo nalevo je násobkem čísla 3, tedy číslo napravo má také být násobkem 3. Vzhledemk tomu, že b a c jsou prvočísla, muselo by být buď b = 3, nebo c = 3. Pro b = 3 by předchozí rovnost vypadala takto 3 · (4 + c)=3c, což ovšem neplatí pro žádné c. Diskuse pro c = 3je obdobná. Případ b = c = 2 tedy není možný.

Jediné úžasné číslo je 28.

#
Dominikbnp
Vždyť ze zadání je zřejmé, že hledáme dokonalá čísla. A je dávno známa věta, v jakém tvaru musí být všechna (sudá) dokonalá čísla. Z toho to plyne hned.

#
Host
Zkus rozložit 6 na součin tří prvočísel

avatar




K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky: