Úžasné číslo

Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.

Správny výsledok:

n =  28

Riešenie:

28=227 1+2+4+7+14+28=228=56



Budeme veľmi radi, ak nájdete chybu v príklade, pravopisné chyby alebo nepresnosť a ju nám prosím pošlete. Ďakujeme!






Zobrazujem 4 komentáre:
#
Mo-radca
Nápoveda. Koľko najviac deliteľov môže mať číslo, ktoré je súčinom troch nie nutne rôzných prvočísel?

Možné riešenie. Pretože úžasné číslo je párne, aspoň jeden z jeho prvočíselných deliteľom 2; zvyšné dva prvočíselne deliteľe označíme b a c. Úžasné číslo je teda presne súčinu 2bc.Všetky delitele takéhoto čísla sú 1, 2, b, c, 2b, 2c, bc, 2bc, pričom niektoré z týchto čísel sa môžu rovnať. Postupne preberieme všetky možnosť podľa počtu a typu rôznych prvočíselných deliteľov.

a) Predpokladajme, že všetky prvočíselne delitele sú rovnaké, teda b = c = 2. V takom prípade by úžasné číslo bolo 8 a všetci jeho delitele by boli 1, 2, 4, 8. Súčet všetkých deliteľov by bol 15, čo nie je dvojnásobok čísla 8. Prípad b = c = 2 teda nie je možný.

b) Predpokladajme, že dva prvočíselne delitele sú rovné 2, teda b = 2. V takom prípade by úžasné číslo bolo 4c a všetky jeho delitele by boli 1, 2, c, 4, 2c, 4c. Súčet všetkých dělitelov by bol 7 + 7c a podľa zadania má platit 7 + 7c = 8c.To platí práve vtedy, keď c = 7; zodpovedajúce úžasné číslo je 4c = 28.

c) Predpokladajme, že dvaja prvočíselne delitele sú rovnaké, avšak obaja rôzne od 2, teda b = c = 2. V takom prípade by úžasné číslo bolo 2b2 a všetci jeho delitele by boli 1, 2, b, 2b, b2 , 2b2. Súčet všetkých deliteľov by bol 3 + 3b + 3b2 a podľa zadania má platiť 3 + 3b + 3b2 = 4b2, 3 (1 + b) = b2. Číslo naľavo je násobkom čísla 3, teda číslo napravo má tiež byť násobkom 3. Vzhľadom k tomu, že b je prvočíslo, muselo by byť b = 3. V takom prípade by však naľavo bolo 3 · 4 = 12, zatiaľ čo napravo 3x2 = 9. Prípad b = c = 2 teda nie je možný.

d) Predpokladajme, že prvočíselne delitele sú navzájom rôzne, teda 2 = b = c = 2. V takom prípade by úžasné číslo bolo 2bc a všetky jeho delitele by boli 1, 2, b, c, 2b, 2c, bc, 2bc. Súčet všetkých deliteľov by bol 3 + 3b + 3c + 3bc a podľa zadania má platiť
   3 + 3b + 3c + 3bc = 4bc, 3 (1 + b + c) = bc.

Číslo naľavo je násobkom čísla 3, teda číslo napravo má tiež byť násobkom 3. Vzhľadom k tomu, že bac sú prvočísla, muselo by byť buď b = 3, alebo c = 3. Pre b = 3 by predchádzajúca rovnosť vyzerala takto 3 · (4 + c) = 3c, čo však neplatí pre žiadne c. Diskusia pre c = 3je obdobná. Prípad b = c = 2 teda nie je možný.

Jediné úžasné číslo je 28.

4 roky  1 Like
#
Niekto
najdete mi dobru ulohu hodiacu sa na MO?

4 roky  1 Like
#
Fff
n=28

avatar









Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:


 
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1

Ďaľšie podobné príklady a úlohy:

  • Pán Cuketa
    cuketa Pán Cuketa mal obdĺžnikovú záhradu, ktorej obvod bol 28 metrov. Obsah celej záhrady vyplnili práve štyri štvorcové záhony, ktorých rozmery v metroch boli vyjadrené celými číslami. Určite aké rozmery mohla mať záhrada. Nájdite všetky možnosti a zapíšte n a
  • C – I – 3 MO 2018
    olympics_10 Nech a, b, c sú kladné reálne čísla, ktorých súčet je 3, a každé z nich je nanajvýš 2. Dokážte, že platí nerovnosť: a2 + b2 + c2 + 3abc < 9
  • Betka
    numbers_2 Betka si myslela prirodzené číslo s navzájom rôznymi ciframi a napísala ho na tabuľu. Podeň zapísala cifry pôvodného čísla odzadu a tak získala nové číslo. Sčítaním týchto dvoch čísel dostala číslo, ktoré malo rovnaký počet cifier ako myslené číslo a skla
  • Na papieri
    number_line Na papieri bolo napísaných niekoľko kladných celých čísel. Miška si pamätala iba to, že každé číslo bolo polovicou súčtu všetkých ostatných čísel. Koľko čísel mohlo byť napísaných na papieri?
  • Obdĺžnik - kto má pravdu
    mo_1 Obdĺžnik je rozdelený na 7 políčok. Na každé políčko sa má napísať práve jedno z čísel 1, 2 a 3. Mirek tvrdia, že to možno vykonať tak, aby súčet dvoch vedľa seba napísaných čísel bol zakaždým iný. Zuzka naopak tvrdia, že to možné nie je. Rozhodnite, kto
  • Z7–I–1 MO 2018
    numbers2_49 Na každej z troch kartičiek je napísaná jedna cifra rôzna od nuly (na rôznych kartičkách nie sú nutne rôzne cifry). Vieme, že akékoľvek trojciferné číslo zložené z týchto kartičiek je deliteľné šiestimi. Navyše možno z týchto kartičiek zložiť trojciferné
  • Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka
  • MO Z8–I–3 - 2017 - Adelka
    numbers2_32 Adelka mala na papieri napísané dve čísla. Keď k nim pripísala ešte ich najväčší spoločný deliteľ a najmenší spoločný násobok, dostala štyri rôzne čísla menšie ako 100. S úžasom zistila, že keď vydelí najväčšie z týchto štyroch čísel najmenším, dostane na
  • MO B 2019 - uloha 2
    olympics Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
  • Z9–I–3 MO 2019
    reciprocal Pre ktoré celé čísla x je podiel (x+11)/(x+7) celým číslom. Riešení je údajne viac.
  • Šťastný deň
    calendar_1 Číslo dňa je poradové číslo daného dňa v príslušnom mesiaci (teda napr. číslo dňa 5. augusta 2016 je 5). Ciferný súčet dňa je súčet hodnôt všetkých cifier v dátume tohto dňa (teda napr. ciferný súčet dňa 5. augusta 2016 je 5+8+2+0+1+6 = 22). Šťastný deň j
  • Pastevci
    ovce-miestami-baran Na lúke sa pasú kone, kravy a ovce, spolu ich je menej ako 200. Keby bolo kráv 45-krát viac, koní 60-krát viac a oviec 35-krát viac ako ich je teraz, ich počty by sa rovnali. Koľko sa spolu na lúke pasie koní, kráv a oviec?
  • Komora
    socks V komore, kde sa rozbilo svetlo a všetko z nej musíme brať naslepo, máme ponožky štyroch rôznych farieb. Ak si chceme byť istí, že vytiahneme aspoň dve biele ponožky, musíme ich z komory priniesť 28. Aby sme mali takú istotu pre sivé ponožky, musíme ich p
  • Číselná os
    osa V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2
  • MO Z9-I-3 2018
    cinema2_14 V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a v
  • Trojciferné čísla
    3digit Z číslic 1, 2, 3, 4, 5 utvor všetky trojciferné čísla tak, aby sa v nich neopakovala žiadna číslica a aby číslo bolo deliteľné číslom 2. Koľko je takých čísel?
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 sa chystali na cestu vlakom s tromi vagónmi. Chceli sa rozsadiť tak, aby v každom vagóne sedeli tri čísla a najväčšie z každej trojice bolo rovné súčtu zvyšných dvoch. Sprievodca tvrdil, že to nie je problém, a snažil sa č