Úžasné číslo
Úžasnými číslom nazveme také párne číslo, ktorého rozklad na súčin prvočísel má práve tri nie nutne rôzne činitele a súčet všetkých jeho deliteľov je rovný dvojnásobku tohto čísla. Nájdite všetky užasné čísla.
Správna odpoveď:

Zobrazujem 4 komentáre:
Mo-radca
Nápoveda. Koľko najviac deliteľov môže mať číslo, ktoré je súčinom troch nie nutne rôzných prvočísel?
Možné riešenie. Pretože úžasné číslo je párne, aspoň jeden z jeho prvočíselných deliteľom 2; zvyšné dva prvočíselne deliteľe označíme b a c. Úžasné číslo je teda presne súčinu 2bc.Všetky delitele takéhoto čísla sú 1, 2, b, c, 2b, 2c, bc, 2bc, pričom niektoré z týchto čísel sa môžu rovnať. Postupne preberieme všetky možnosť podľa počtu a typu rôznych prvočíselných deliteľov.
a) Predpokladajme, že všetky prvočíselne delitele sú rovnaké, teda b = c = 2. V takom prípade by úžasné číslo bolo 8 a všetci jeho delitele by boli 1, 2, 4, 8. Súčet všetkých deliteľov by bol 15, čo nie je dvojnásobok čísla 8. Prípad b = c = 2 teda nie je možný.
b) Predpokladajme, že dva prvočíselne delitele sú rovné 2, teda b = 2. V takom prípade by úžasné číslo bolo 4c a všetky jeho delitele by boli 1, 2, c, 4, 2c, 4c. Súčet všetkých dělitelov by bol 7 + 7c a podľa zadania má platit 7 + 7c = 8c.To platí práve vtedy, keď c = 7; zodpovedajúce úžasné číslo je 4c = 28.
c) Predpokladajme, že dvaja prvočíselne delitele sú rovnaké, avšak obaja rôzne od 2, teda b = c = 2. V takom prípade by úžasné číslo bolo 2b2 a všetci jeho delitele by boli 1, 2, b, 2b, b2 , 2b2. Súčet všetkých deliteľov by bol 3 + 3b + 3b2 a podľa zadania má platiť 3 + 3b + 3b2 = 4b2, 3 (1 + b) = b2. Číslo naľavo je násobkom čísla 3, teda číslo napravo má tiež byť násobkom 3. Vzhľadom k tomu, že b je prvočíslo, muselo by byť b = 3. V takom prípade by však naľavo bolo 3 · 4 = 12, zatiaľ čo napravo 3x2 = 9. Prípad b = c = 2 teda nie je možný.
d) Predpokladajme, že prvočíselne delitele sú navzájom rôzne, teda 2 = b = c = 2. V takom prípade by úžasné číslo bolo 2bc a všetky jeho delitele by boli 1, 2, b, c, 2b, 2c, bc, 2bc. Súčet všetkých deliteľov by bol 3 + 3b + 3c + 3bc a podľa zadania má platiť
3 + 3b + 3c + 3bc = 4bc, 3 (1 + b + c) = bc.
Číslo naľavo je násobkom čísla 3, teda číslo napravo má tiež byť násobkom 3. Vzhľadom k tomu, že bac sú prvočísla, muselo by byť buď b = 3, alebo c = 3. Pre b = 3 by predchádzajúca rovnosť vyzerala takto 3 · (4 + c) = 3c, čo však neplatí pre žiadne c. Diskusia pre c = 3je obdobná. Prípad b = c = 2 teda nie je možný.
Jediné úžasné číslo je 28.
Možné riešenie. Pretože úžasné číslo je párne, aspoň jeden z jeho prvočíselných deliteľom 2; zvyšné dva prvočíselne deliteľe označíme b a c. Úžasné číslo je teda presne súčinu 2bc.Všetky delitele takéhoto čísla sú 1, 2, b, c, 2b, 2c, bc, 2bc, pričom niektoré z týchto čísel sa môžu rovnať. Postupne preberieme všetky možnosť podľa počtu a typu rôznych prvočíselných deliteľov.
a) Predpokladajme, že všetky prvočíselne delitele sú rovnaké, teda b = c = 2. V takom prípade by úžasné číslo bolo 8 a všetci jeho delitele by boli 1, 2, 4, 8. Súčet všetkých deliteľov by bol 15, čo nie je dvojnásobok čísla 8. Prípad b = c = 2 teda nie je možný.
b) Predpokladajme, že dva prvočíselne delitele sú rovné 2, teda b = 2. V takom prípade by úžasné číslo bolo 4c a všetky jeho delitele by boli 1, 2, c, 4, 2c, 4c. Súčet všetkých dělitelov by bol 7 + 7c a podľa zadania má platit 7 + 7c = 8c.To platí práve vtedy, keď c = 7; zodpovedajúce úžasné číslo je 4c = 28.
c) Predpokladajme, že dvaja prvočíselne delitele sú rovnaké, avšak obaja rôzne od 2, teda b = c = 2. V takom prípade by úžasné číslo bolo 2b2 a všetci jeho delitele by boli 1, 2, b, 2b, b2 , 2b2. Súčet všetkých deliteľov by bol 3 + 3b + 3b2 a podľa zadania má platiť 3 + 3b + 3b2 = 4b2, 3 (1 + b) = b2. Číslo naľavo je násobkom čísla 3, teda číslo napravo má tiež byť násobkom 3. Vzhľadom k tomu, že b je prvočíslo, muselo by byť b = 3. V takom prípade by však naľavo bolo 3 · 4 = 12, zatiaľ čo napravo 3x2 = 9. Prípad b = c = 2 teda nie je možný.
d) Predpokladajme, že prvočíselne delitele sú navzájom rôzne, teda 2 = b = c = 2. V takom prípade by úžasné číslo bolo 2bc a všetky jeho delitele by boli 1, 2, b, c, 2b, 2c, bc, 2bc. Súčet všetkých deliteľov by bol 3 + 3b + 3c + 3bc a podľa zadania má platiť
3 + 3b + 3c + 3bc = 4bc, 3 (1 + b + c) = bc.
Číslo naľavo je násobkom čísla 3, teda číslo napravo má tiež byť násobkom 3. Vzhľadom k tomu, že bac sú prvočísla, muselo by byť buď b = 3, alebo c = 3. Pre b = 3 by predchádzajúca rovnosť vyzerala takto 3 · (4 + c) = 3c, čo však neplatí pre žiadne c. Diskusia pre c = 3je obdobná. Prípad b = c = 2 teda nie je možný.
Jediné úžasné číslo je 28.
7 rokov 1 Like
Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:
Téma:
Úroveň náročnosti úlohy:
Odporúčame k tejto úlohe z matematiky si pozrieť toto výukové video: video1
Súvisiace a podobné príklady:
- Dvojnásobku 2757
Súčet všetkých deliteľov istého nepárneho čísla je 78. Určite, aký je súčet všetkých deliteľov dvojnásobku tohto neznámeho čísla. Aké je to nepoznáme číslo?
- Delitele
Súčet všetkých deliteľov istého nepárneho čísla je 2112. Určte, aký je súčet všetkých deliteĺov dvojnásobku tohto neznámeho čísla.
- Najväčšie číslo
Nájdite najväčšie číslo také, že: 1.Žiadne číslice sa v ňom neopakuje, 2.súčin každých dvoch číslic je nepárny, 3.súčet všetkých číslic je párny.
- Minimum
Nájdite také kladné číslo, aby súčet tohto čísla a jeho prevrátenej hodnoty bol minimálny.
- Štvorciferné čísla
Nájdite štvorciferné čísla, kde všetky číslice sú rôzne. Pre čísla platí, že súčet tretej a štvrtej číslice je dvakrát väčší ako súčet prvých dvoch číslic a súčet prvej a štvrtej číslice je rovný súčtu druhej a tretej číslice. Číslice 0 nesmie byt na prve
- Trojciferné čísla
Z číslic 1, 2, 3, 4, 5 utvor všetky trojciferné čísla tak, aby sa v nich neopakovala žiadna číslica a aby číslo bolo deliteľné číslom 2. Koľko je takých čísel?
- MO Z8-I-2 2012
Číslo X je najmenšie také prirodzené číslo, ktorého polovica je deliteľná tromi, tretina deliteľná štyrmi, štvrtina deliteľná jedenástimi a jeho polovica dáva zvyšok 5 po delení siedmimi. Nájdite toto číslo.
- Rozložte
Rozložte na súčin prvočísel čísla a určte jeho ciferný súčet: 180, 232, 460, 240, 365,
- Cifry A, B, C
Pro rôzne cifry A, B, C platí: druhá odmocnina zo BC sa rovná A a súčet B + C sa rovná A. Urči A+ 2B + 3C. BC uvažujte ako dvojciferné číslo, nie ako súčin.
- MO B 2019 - uloha 2
Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.
- Súčet dvoch prvočísel
Matematik Christian Goldbach zistil, že každé párne číslo väčšie ako 2 môže byť vyjadrené ako súčet dvoch prvočíselných čísel. Napíšte alebo vyjadrite 2018 ako súčet dvoch prvočísel.
- Mamičkin PIN
Mamička zabudla PIN kód svojej bankomatovej karty, ktorý tvorili 4 rôzne čísla. Pomôž jej ho zostaviť, ak si pamätá, že : A - všetky čisla boli párne B - nula v pin kode nebola C - prvé číslo bolo násobkom druhého čisla a toto číslo bolo v PIN kóde najväč
- Rozklad
Urobte rozklad pomocou prvočísel čísla 155. Výsledok zapíšte ako prvočíselné delitele (všetky, aj násobné)
- Štvrtiny
Vypočítajte číslo, ktorého tri štvrtiny sú o 2 menšie ako dve pätiny jeho dvojnásobku.
- Číslo
Vypočítajte číslo, ktorého 3/4 sú o 2 menšie ako 2/5 jeho dvojnásobku.
- Aké je
Aké je párne päťciferné číslo, ktorého ciferný súčet je 44?
- Deliteľov 7779
Sú dané dve čísla. Druhé číslo je päťkrát väčšie ako prvé číslo a druhá mocnina prvého čísla sa rovná 3/5 druhého čísla, určite súčet oboch čísel a všetkých jeho deliteľov.