MO B 2019 - uloha 2

Prirodzené číslo n má aspoň 73 dvojciferných deliteľov. Dokážte, že jedným z nich je číslo 60. Uveďte tiež príklad čísla n, ktoré má práve 73 dvojciferných deliteľov, vrátane náležitého zdôvodnenia.

Výsledok

n1 = (Správna odpoveď je: 11 * 12 * 13 * 14 * 16 * 17 * 18 * 19 * 21 * 22 * 23 * 24 * 26 * 27 * 28 * 29 * 31 * 32 * 33 * 34 * 36 * 37 * 38 * 39 * 41 * 42 * 43 * 44 * 46 * 47 * 48 * 49 * 51 * 52 * 53 * 54 * 56 * 57 * 58 * 59 * 61 * 62 * 63 * 64 * 66 * 67 * 68 * 69 * 71 * 72 * 73 * 74 * 76 * 77 * 78 * 79 * 81 * 82 * 83 * 84 * 86 * 87 * 88 * 89 * 91 * 92 * 93 * 94 * 96 * 97 * 98 * 99 * 15) Nesprávne

Riešenie:

60 = 2^2 * 3 * 5

d1 = 11 ....... 11 not div 5
d2 = 12 ....... 12 not div 5 ; 12 div 3; 12 div 4
d3 = 13 ....... 13 not div 5
d4 = 14 ....... 14 not div 5
d5 = 16 ....... 16 not div 5 ; 16 div 4
d6 = 17 ....... 17 not div 5
d7 = 18 ....... 18 not div 5 ; 18 div 3
d8 = 19 ....... 19 not div 5
d9 = 21 ....... 21 not div 5 ; 21 div 3
d10 = 22 ....... 22 not div 5
d11 = 23 ....... 23 not div 5
d12 = 24 ....... 24 not div 5 ; 24 div 3; 24 div 4
d13 = 26 ....... 26 not div 5
d14 = 27 ....... 27 not div 5 ; 27 div 3
d15 = 28 ....... 28 not div 5 ; 28 div 4
d16 = 29 ....... 29 not div 5
d17 = 31 ....... 31 not div 5
d18 = 32 ....... 32 not div 5 ; 32 div 4
d19 = 33 ....... 33 not div 5 ; 33 div 3
d20 = 34 ....... 34 not div 5
d21 = 36 ....... 36 not div 5 ; 36 div 3; 36 div 4
d22 = 37 ....... 37 not div 5
d23 = 38 ....... 38 not div 5
d24 = 39 ....... 39 not div 5 ; 39 div 3
d25 = 41 ....... 41 not div 5
d26 = 42 ....... 42 not div 5 ; 42 div 3
d27 = 43 ....... 43 not div 5
d28 = 44 ....... 44 not div 5 ; 44 div 4
d29 = 46 ....... 46 not div 5
d30 = 47 ....... 47 not div 5
d31 = 48 ....... 48 not div 5 ; 48 div 3; 48 div 4
d32 = 49 ....... 49 not div 5
d33 = 51 ....... 51 not div 5 ; 51 div 3
d34 = 52 ....... 52 not div 5 ; 52 div 4
d35 = 53 ....... 53 not div 5
d36 = 54 ....... 54 not div 5 ; 54 div 3
d37 = 56 ....... 56 not div 5 ; 56 div 4
d38 = 57 ....... 57 not div 5 ; 57 div 3
d39 = 58 ....... 58 not div 5
d40 = 59 ....... 59 not div 5
d41 = 61 ....... 61 not div 5
d42 = 62 ....... 62 not div 5
d43 = 63 ....... 63 not div 5 ; 63 div 3
d44 = 64 ....... 64 not div 5 ; 64 div 4
d45 = 66 ....... 66 not div 5 ; 66 div 3
d46 = 67 ....... 67 not div 5
d47 = 68 ....... 68 not div 5 ; 68 div 4
d48 = 69 ....... 69 not div 5 ; 69 div 3
d49 = 71 ....... 71 not div 5
d50 = 72 ....... 72 not div 5 ; 72 div 3; 72 div 4
d51 = 73 ....... 73 not div 5
d52 = 74 ....... 74 not div 5
d53 = 76 ....... 76 not div 5 ; 76 div 4
d54 = 77 ....... 77 not div 5
d55 = 78 ....... 78 not div 5 ; 78 div 3
d56 = 79 ....... 79 not div 5
d57 = 81 ....... 81 not div 5 ; 81 div 3
d58 = 82 ....... 82 not div 5
d59 = 83 ....... 83 not div 5
d60 = 84 ....... 84 not div 5 ; 84 div 3; 84 div 4
d61 = 86 ....... 86 not div 5
d62 = 87 ....... 87 not div 5 ; 87 div 3
d63 = 88 ....... 88 not div 5 ; 88 div 4
d64 = 89 ....... 89 not div 5
d65 = 91 ....... 91 not div 5
d66 = 92 ....... 92 not div 5 ; 92 div 4
d67 = 93 ....... 93 not div 5 ; 93 div 3
d68 = 94 ....... 94 not div 5
d69 = 96 ....... 96 not div 5 ; 96 div 3; 96 div 4
d70 = 97 ....... 97 not div 5
d71 = 98 ....... 98 not div 5
d72 = 99 ....... 99 not div 5 ; 99 div 3








Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 2 komentáre:
#
Dr Math
takto, 60 = 4*3*5

vypisem si dvojciferne cisla ktore nie su delitelne 5. Je ich 72. Podozrive cislo.  V mnozine tychto 72 cisel su zarucene cisla ktore su delitelne cislom 3 aj 4 (napr. cislo 36 ...). Teda ak k tymto 72 cislam pridam akekolvek dvojciferne cislo, je zarucene delitelne 5 (lebo som vynechal len delitelne piatimi). Ak by som vynasobil vsetkych 73 cisel, zarucene mam ze vysledok nasobenia bude delitelny 3,4 aj 5, a preto aj 60.

#
Dr Math
tych 72 zistim tak ze mame 100-10 = 90 ruznych dvojcifernych cisel. dvojcifernych cisel delitelnych 5 je 100/5 - 2 = 18. 90-18=72

avatar









Ďaľšie podobné príklady a úlohy:

  1. Z5–I–4 MO 2019
    2019 Vojto začal vypisovať do zošita číslo terajšieho školského roku 2019202020192020. . . A tak pokračoval stále ďalej. Keď napísal 2020 cifier, prestalo ho to baviť. Koľko tak napísal dvojok?
  2. Richardove čísla Z8-I-2 2019
    numbers2 Richard sa pohrával s dvoma päťcifernými číslami. Každé pozostávalo z navzájom rôznych cifier, ktoré pri jednom boli všetky nepárne a pri druhom všetky párne. Po chvíli zistil, že súčet týchto dvoch čísel začína dvojčíslím 11 a končí číslom 1 a že ich rozd
  3. Deliteľnosť 2
    divisors Koľko deliteľov má prirodzené číslo 123?
  4. MO Z8 – I – 4 2018
    olympics_8 Na štyroch kartičkách boli štyri rôzne cifry, z ktorých jedna bola nula. Vojto z kartičiek zložil čo najväčšie štvorciferné číslo, Martin potom čo najmenšie štvorciferné číslo. Adam zapísal na tabuľu rozdiel Vojtovho a Martinovho čísla. Potom Vojto z karti
  5. Dôkaz sporom
    thales_1 Chceme dokázať sporom tvrdenie: Ak je prirodzené číslo n deliteľné šiestimi, potom je n deliteľné tromi. Z akého predpokladu budeme vychádzať?
  6. Zvyšok po delení
    modulo_1 Aký zvyšok dá pri delení číslom 9 číslo 10 na 47 - 111?
  7. Šesťciferné prvočísla
    numberline_1 Nájdite všetky šesťciferné prvočísla, ktoré obsahujú každú z číslic 1,2,4,5,7 a 8 práve raz. Koľko ich je?
  8. Cirkus
    cirkus Na cirkusovom predstavení bolo 150 ľudí. Mužov bolo o desať menej ako žien a detí o 50 viac ako dospelých. Koľko detí bolo v cirkuse?
  9. Družstvá - futbal
    futball_ball_4 Všetkých hráčov je 103. Družstvo A o 3 hráčov menej ako B, družstvo C o 2 hráčov viac ako D, družstvo D rovnaký počet ako B. Koľko hráčov má ktoré družstvo?
  10. MO Z9-I-3 2018
    cinema2_14 V našom meste sú tri kiná, ktorým sa hovorí podľa svetových strán. O ich otváracích hodinách je známe, že: • každý deň je otvorené aspoň jedno kino, • ak je otvorené južné kino, tak nie je otvorené severné kino, • nikdy nie je otvorené súčasne severné a
  11. Lotéria
    lottery Fernando má dva žreby, každý z inej lotérie. V prvej lotérii je 973 000 žrebov a z nich vyhráva 687 000, v druhej lotérii je 1425 000 žrebov a z nich vyhráva 1102 000 žrebov. Aká veľká je pravdepodobnosť, že vyhrá aspoň jeden Fernando-ov žreb?
  12. MO-I-Z6
    stvorec_4 Štvorec so stranou 4 cm je rozdelený na štvorčeky so stranou 1 cm ako na obrázku. Rozdeľte štvorec pozdĺž vyznačených čiar na dva útvary s obvodom 16 cm. Nájdite aspoň tri rôzne riešenia (tzn. také tri riešenia, aby žiadny útvar jedného riešenia nebol zhod
  13. Traja strelci
    terc2_3 Traja strelci strieľajú, každý raz, na ten istý terč. Prvý zasiahne cieľ s pravdepodobnosťou 0,7; druhý s pravdepodobnosťou 0,8 a tretí s pravdepodobnosťou 0,9. Aká je pravdepodobnsť, že terč zasiahnu: a) práve raz b) aspoň raz c) aspoň dvakrát
  14. Medián
    statistics U 11 žiakov bol zaznamenaný počet vymeškaných hodín: 5,12,6,8,10,7,5,110,2,5,6. Určte medián.
  15. Koza 4
    bielakoza Slnko vychádza na východe od prístrešku a zapadá na západe. Koze by sa zišlo trochu tieňa, kde a aký druh stromu treba zasadiť , aby ho neobjedla?
  16. Nádoby 2
    gule_4 V prvej nádobe máme 3 biele a 6 čiernych guľôčok. V druhej nádobe máme 2 biele a 6 čiernych guľôčok. Z prvej nádoby náhodne preložíme do druhej nádoby 1 guľôčku. Aká je pravdepodobnosť, že potom z druhej nádoby vyberiem 2 biele guľôčky?
  17. Trieda
    kresba V triede je 60% chlapcov a 40% dievčat. Dlhé vlasy má 10% chlapcov a 80% dievčat. a) Aká je pravdepodobnosť, že náhodne vybraná osoba má dlhé vlasy? b) Vybraná osoba má dlhé vlasy. Aká je pravdepodobnosť, že je to dievča?