Mo - kružnice

Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která by ležela uvnitř čtverce a dotýkala se čtvrtkružnice k, půlkružnice l i strany AB. Určete poloměr takové kružnice.

Správný výsledek:

r =  3 cm

Řešení:

SO=SL+LO=R+6 SB=BKKS=12r OE=OBBE=6r  SE²=SO²OE²=SB²BE² (6+r)²(6r)²=(12r)²r² 12r+12r=14424r 48r=144 r=144/48=3 cm



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!







Nejoblíbenější komentáře:
#
Peter2
Nápověda. Přemýšlejte, jak byste pomocí poloměru hledané kružnice vyjádřili vzdálenost
jejího středu od úsečky AB, příp. BC.

Možné řešení. Během řešení se odkazujeme na obrázek, v němž O značí střed strany BC, S značí střed Jirkovy vytoužené kružnice h, K značí dotykový bod kružnic h a k, L značí dotykový bod kružnic h a l a M značí dotykový bod kružnice h a úsečky AB. Dále budeme odkazovat na pomocný bod E, který je patou kolmice z bodu S na stranu BC. Hledaný poloměr kružnice h v cm označíme r.

Vzdálenost bodu S od úsečky AB je rovna r = |SM| = |EB|. Vzdálenost bodu S od úsečky BC je rovna velikosti úsečky SE, která je odvěsnou jak v pravoúhlém trojúhelníku SEO, tak v trojúhelníku SEB. Všechny zbylé strany v obou trojúhelnících snadno vyjádříme pomocí r; odtud pomocí Pythagorovy věty budeme umět určit neznámou r.

Body S a O jsou středy kružnic h a l, které se dotýkají v bodě L. Tyto tři body leží na jedné přímce, vzdálenost SO je proto rovna.

|SO| = |SL| + |LO| = r + 6

Obdobně, vzdálenost SB je rovna

|SB| = |BK| − |KS| = 12 − r

neboť S a O jsou středy kružnic h a k a K je jejich dotykovým bodem. Vzdálenost OE je rovna:

|OE| = |OB| − |BE| = 6 − r

Odtud a z Pythagorovy věty v trojúhelnících SEO a SEB dostáváme:
|SE|² = |SO|² − |OE|² = |SB|² − |BE|²

(6 + r)² − (6 − r)² = (12 − r)² − r²

12r + 12r = 144 − 24r,
48r = 144,
r = 3.
Poloměr hledané kružnice je 3 cm

5 let  5 Likes
Zobrazuji 3 komentáře:
#
Ahoj
A zdůvodnení??

#
Žák
velice by mě zajímal důkaz, že poloměr je opravdu 3 cm. Věděl by někdo?

#
Peter2
Nápověda. Přemýšlejte, jak byste pomocí poloměru hledané kružnice vyjádřili vzdálenost
jejího středu od úsečky AB, příp. BC.

Možné řešení. Během řešení se odkazujeme na obrázek, v němž O značí střed strany BC, S značí střed Jirkovy vytoužené kružnice h, K značí dotykový bod kružnic h a k, L značí dotykový bod kružnic h a l a M značí dotykový bod kružnice h a úsečky AB. Dále budeme odkazovat na pomocný bod E, který je patou kolmice z bodu S na stranu BC. Hledaný poloměr kružnice h v cm označíme r.

Vzdálenost bodu S od úsečky AB je rovna r = |SM| = |EB|. Vzdálenost bodu S od úsečky BC je rovna velikosti úsečky SE, která je odvěsnou jak v pravoúhlém trojúhelníku SEO, tak v trojúhelníku SEB. Všechny zbylé strany v obou trojúhelnících snadno vyjádříme pomocí r; odtud pomocí Pythagorovy věty budeme umět určit neznámou r.

Body S a O jsou středy kružnic h a l, které se dotýkají v bodě L. Tyto tři body leží na jedné přímce, vzdálenost SO je proto rovna.

|SO| = |SL| + |LO| = r + 6

Obdobně, vzdálenost SB je rovna

|SB| = |BK| − |KS| = 12 − r

neboť S a O jsou středy kružnic h a k a K je jejich dotykovým bodem. Vzdálenost OE je rovna:

|OE| = |OB| − |BE| = 6 − r

Odtud a z Pythagorovy věty v trojúhelnících SEO a SEB dostáváme:
|SE|² = |SO|² − |OE|² = |SB|² − |BE|²

(6 + r)² − (6 − r)² = (12 − r)² − r²

12r + 12r = 144 − 24r,
48r = 144,
r = 3.
Poloměr hledané kružnice je 3 cm

5 let  5 Likes
avatar









Tipy na související online kalkulačky
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.

K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:


 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1   video2

Další podobné příklady a úkoly:

  • Z7-1-6 MO 2018
    iso_rt Je dán rovnoramenný pravoúhlý trojúhelník ABS se základnou AB. Na kružnici, která má střed v bodě S a prochází body A a B, leží bod C tak, že trojúhelník ABC je rovnoramenný. Určete, kolik bodů C vyhovuje uvedeným podmínkám, a všechny takové body sestrojt
  • Rovnoramenný lichoběžník
    mo-klm Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikost
  • Šestiúhelník nepravidelný
    6uholnik_nepravidelny Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF
  • Z9-I-5 MO 2017 obdélník
    flg Uvnitř obdélníku ABCD leží body E a F tak, že úsečky EA, ED, EF, FB, FC jsou navzájem shodné. Strana AB je dlouhá 22 cm a kružnice opsaná trojúhelníku AFD má poloměr 10cm. Určete délku strany BC.
  • Katka MO
    reporter_saved6 Katka narýsovala trojúhelník ABC. Střed strany AB si označila jako X a střed strany AC jako Y . Na straně BC chce najít takový bod Z, aby obsah čtyřúhelníku AXZY byl co největší. Jakou část trojúhelníku ABC může maximálně zabírat čtyřúhelník AXZY ?
  • Pětiúhelník
    5gon_1 Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP? Udělej si náčrtek
  • MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  • Množina bodů Z7–I–5.
    triangles_12 Je dán trojúhelník ABC se stranami /AB/=3 cm, /BC/= 10 cm a úhlem ABC = 120°. Narýsujte všechny body X tak, aby platilo, že trojúhelník BCX je rovnoramenný a současně trojúhelník ABX je rovnoramenný se základnou AB.
  • Číselna osa
    osa V kocourkovské škole používají zvláštní číselnou osu. Vzdálenost mezi čísly 1 a 2 je 1 cm, vzdálenost mezi čísly 2 a 3 je 3 cm, mezi čísly 3 a 4 je 5 cm, a tak dále, vzdálenost mezi následující dvojicí přirozenými čísly se vždy zvètší o 2 cm. Mezi kterými
  • Z9–I–6
    otaceni_ctverce Je dána úsečka AB délky 12 cm, na níž je jednou stranou položen čtverec MRAK se stranou délky 2 cm, viz obrázek. MRAK se postupně překlápí po úsečce AB, přičemž bod R zanechává na papíře stopu. Narýsujte celou stopu bodu R, dokud čtverec neobejde úsečku A
  • Z8–I–5 MO 2019
    mo_z8_trojuhelniky Pro osm navzájem různých bodů jako na obrázku platí, že body C, D, E leží na přímce rovnoběžné s přímkou AB, F je středem úsečky AD, G je středem úsečky AC a H je průsečíkem přímek AC a BE. Obsah trojúhelníku BCG je 12 cm2 a obsah čtyřúhelníku DFHG je 8
  • Tečny
    tangents Ke kružnici s průměrom 178 cm jsou z bodu W vedené dvě tečny. Vzdálenost obou dotykových bodů je 74 cm. Vypočítejte vzdálenost bodu W od středu kružnice.
  • Lichoběžník MO-5-Z8
    lichobeznik_mo_z8 Lichoběžník ABCD je úsečkou CE rozdělen na trojúhelník a rovnoběžník, viz obrázek. Bod F je středem úsečky CE, přímka DF prochází středem úsečky BE a obsah trojúhelníku CDE je 3 cm2. Určete obsah lichoběžníku ABCD.
  • Trojúhelník
    lalala V trojúhelníku ABC se stranou BC délky 2 cm je bod K středem strany AB. Body L a M rozdělují stranu AC na tři shodné úsečky. Trojúhelník KLM je rovnoramenný s pravým úhlem u vrcholu K. Určete délky stran AB, AC trojúhelníku ABC.
  • Trojúhelník KLB
    rovnostranny_trojuholnik Je dán rovnostranný trojúhelník ABC. Z bodu L který je středem strany BC tohoto trojúhelníku, je spuštěna kolmice k na stranu AB. Průsečík kolmice k a strany AB je označen jako bod K. Kolik % z obsahu trojúhelníku ABC tvoří trojúhelník KLB?
  • Body na kružnici
    coordinates_circle V pravoúhlé soustavě souřadnic s počátkem O je narýsována kružnice k/O 2 cm/. Zapiš pomocí souřadnic všechny body, které leží na kružnici k a jejichž souřadnice jsou celá čísla. Zapiš všechny body, které leží na kružnici l/O 5 cm/a jejichž souřadnice jsou
  • Kružnice
    kruznica Kružnice se dotýká dvou rovnoběžek p a q, její střed leží na přímce a, která je sečnou obou přímek. Napište její rovnici a určete souřadnice středu a poloměru. p: x-10 = 0 q: -x-19 = 0 a: 9x-4y+5 = 0