Mo - kružnice
Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která by ležela uvnitř čtverce a dotýkala se čtvrtkružnice k, půlkružnice l i strany AB. Určete poloměr takové kružnice.
Správná odpověď:

Zobrazuji 3 komentáře:
Peter2
Nápověda. Přemýšlejte, jak byste pomocí poloměru hledané kružnice vyjádřili vzdálenost
jejího středu od úsečky AB, příp. BC.
Možné řešení. Během řešení se odkazujeme na obrázek, v němž O značí střed strany BC, S značí střed Jirkovy vytoužené kružnice h, K značí dotykový bod kružnic h a k, L značí dotykový bod kružnic h a l a M značí dotykový bod kružnice h a úsečky AB. Dále budeme odkazovat na pomocný bod E, který je patou kolmice z bodu S na stranu BC. Hledaný poloměr kružnice h v cm označíme r.
Vzdálenost bodu S od úsečky AB je rovna r = |SM| = |EB|. Vzdálenost bodu S od úsečky BC je rovna velikosti úsečky SE, která je odvěsnou jak v pravoúhlém trojúhelníku SEO, tak v trojúhelníku SEB. Všechny zbylé strany v obou trojúhelnících snadno vyjádříme pomocí r; odtud pomocí Pythagorovy věty budeme umět určit neznámou r.
Body S a O jsou středy kružnic h a l, které se dotýkají v bodě L. Tyto tři body leží na jedné přímce, vzdálenost SO je proto rovna.
|SO| = |SL| + |LO| = r + 6
Obdobně, vzdálenost SB je rovna
|SB| = |BK| − |KS| = 12 − r
neboť S a O jsou středy kružnic h a k a K je jejich dotykovým bodem. Vzdálenost OE je rovna:
|OE| = |OB| − |BE| = 6 − r
Odtud a z Pythagorovy věty v trojúhelnících SEO a SEB dostáváme:
|SE|² = |SO|² − |OE|² = |SB|² − |BE|²
(6 + r)² − (6 − r)² = (12 − r)² − r²
12r + 12r = 144 − 24r,
48r = 144,
r = 3.
Poloměr hledané kružnice je 3 cm
jejího středu od úsečky AB, příp. BC.
Možné řešení. Během řešení se odkazujeme na obrázek, v němž O značí střed strany BC, S značí střed Jirkovy vytoužené kružnice h, K značí dotykový bod kružnic h a k, L značí dotykový bod kružnic h a l a M značí dotykový bod kružnice h a úsečky AB. Dále budeme odkazovat na pomocný bod E, který je patou kolmice z bodu S na stranu BC. Hledaný poloměr kružnice h v cm označíme r.
Vzdálenost bodu S od úsečky AB je rovna r = |SM| = |EB|. Vzdálenost bodu S od úsečky BC je rovna velikosti úsečky SE, která je odvěsnou jak v pravoúhlém trojúhelníku SEO, tak v trojúhelníku SEB. Všechny zbylé strany v obou trojúhelnících snadno vyjádříme pomocí r; odtud pomocí Pythagorovy věty budeme umět určit neznámou r.
Body S a O jsou středy kružnic h a l, které se dotýkají v bodě L. Tyto tři body leží na jedné přímce, vzdálenost SO je proto rovna.
|SO| = |SL| + |LO| = r + 6
Obdobně, vzdálenost SB je rovna
|SB| = |BK| − |KS| = 12 − r
neboť S a O jsou středy kružnic h a k a K je jejich dotykovým bodem. Vzdálenost OE je rovna:
|OE| = |OB| − |BE| = 6 − r
Odtud a z Pythagorovy věty v trojúhelnících SEO a SEB dostáváme:
|SE|² = |SO|² − |OE|² = |SB|² − |BE|²
(6 + r)² − (6 − r)² = (12 − r)² − r²
12r + 12r = 144 − 24r,
48r = 144,
r = 3.
Poloměr hledané kružnice je 3 cm
7 let 5 Likes
Tipy na související online kalkulačky
Pythagorova věta je základ výpočtů kalkulačky pravouhlého trojuholníka.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Téma:
Úroveň náročnosti úkolu:
Související a podobné příklady:
- Z7-1-6 MO 2018
Je dán rovnoramenný pravoúhlý trojúhelník ABS se základnou AB. Na kružnici, která má střed v bodě S a prochází body A a B, leží bod C tak, že trojúhelník ABC je rovnoramenný. Určete, kolik bodů C vyhovuje uvedeným podmínkám, a všechny takové body sestrojt
- Čtyřúhelníku 81469
Dán je čtverec ABCD. Střed AB je E, střed BC je F, CD je G a střed DA je H. Spojíme AF, BG, CH a DE. Uvnitř čtverce (přibližně uprostřed) průsečíky těchto úseček vytvoří čtyřúhelník. Vypočítejte obsah tohoto čtyřúhelníku. Děkuji
- Tětiva 20
V kružnici s průměrem d= 10 cm, je sestrojena tětiva o délce 6 cm. Jaký poloměr by měla soustředná kružnice, která by se této tětivy dotýkala?
- Kružnice 14683
Bod B je střed kružnice. Přímka AC se dotýká kružnic v bodě C a platí AB=20 cm a AC=16 cm. Jaký je poloměr kružnice BC?
- Z8 – I – 3 MO 2018
Petr narýsoval pravidelný šestiúhelník, jehož vrcholy ležely na kružnici délky 16 cm. Potom z každého vrcholu tohoto šestiúhelníku narýsoval kružnici, která procházela dvěma sousedními vrcholy. Vznikl tak útvar jako na následujícím obrázku. Určete obvod v
- Z9-I-5 MO 2017 obdélník
Uvnitř obdélníku ABCD leží body E a F tak, že úsečky EA, ED, EF, FB, FC jsou navzájem shodné. Strana AB je dlouhá 22 cm a kružnice opsaná trojúhelníku AFD má poloměr 10cm. Určete délku strany BC.
- Jednotek 68324
Kruh je má střed v bodě (-7, -1) a prochází bodem (8, 7). Poloměr kruhu je r jednotek. Bod (-15, y) leží na této kružnici. Co je r a y (nebo y1, y2)?
- Trojúhelníku 4908
Lichoběžník ABCD se základnami AB=a, CD=c má výšku v. Bod S je střed ramene BC. Dokažte, že obsah trojúhelníku ASD se rovná polovině obsahu lichoběžníku ABCD.
- V čtverci
V čtverci ABCD se stranou a = 6 cm je bod E střed strany AB a bod F střed strany BC. Vypočítejte velikost všech úhlů trojúhelníku DEF a délky jeho stran.
- Souměrnosti 13501
Narýsuj čtverec KLMN, bod R, který je bodem čtverce a bod S, který není bodem tohoto čtverce. Narysuj obraz čtverce KLMN ve středové souměrnosti se středem : a) v bodě s b) v bodě M c) v bodě R
- Dorýsuj
Dorýsuj úsečku AB, znáš-li jeden její krajní bod a střed úsečky S.
- Tětiva BC
Je dána kružnice k se středem v bodě S = [0; 0]. Bod A = [40; 30] leží na kružnici k. Jak dlouhá je tětiva BC pokud střed P této tětivy má souřadnice: [- 14; 0]?
- Jak velká
Jak velká je hnědě vybarvená plocha uvnitř čtverce o straně 6 cm, pokud každá ze čtyř hnědých kruhových úsečí je z kruhu o poloměru délky stany čtverce? Délka kruhových úsečí je rovna délce strany čtverce. Situace je vyobrazena na obrázku vpravo.
- Tětiva
Na kružnici k(S;r=8cm) jsou různé body A, B spojené úsečkou /AB/=12cm. Střed AB označ S´. Vypočítej /SS´/. Proveď náčrtek.
- Rovnostranný 7962
Po dlouhém večeři uvnitř salonku ve tvaru čtverce ABCD leží opilý kupec E tak, že trojúhelník DEC je rovnostranný. Na hraně BC leží špeh F, přičemž |EB|=|EF|. Jaká je velikost úhlu CEF?
- Kružnice
Vypočtěte délku kružnice opsané čtverci o straně 10 cm. Porovnejte ji s obvodem tohoto čtverce.
- Je dán 14
Je dán trojúhelník ABC a kružnice vepsaná do tohoto trojúhelníka o poloměru 15. Bod T je bodem dotyku vepsané kružnice se stranou BC. Jaká je plocha trojúhelníka ABC jestliže |BT| = 25 a |TC| = 26?