Pětiúhelník

Uvnitř pravidelného pětiúhelníku ABCDE je bod P takový, že trojúhelník ABP je rovnostranný. Jak velký je úhel BCP?
Udělej si náčrtek

Správný výsledek:

x =  66 °

Řešení:

x=(180(2 5460))/2=66



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 5 komentářů:
#
Patrikngu
jak se na ten priklad prijde

4 roky  3 Likes
#
Žák
trojuhelnik abp jr rovnostranny dle zadani,proto strana ab=bp=pa.u petiuhelniku ab=bc=bp. trojuhelnik bcp je rovnoramenny,,bc=bp. vsechny uhly petiuhelniku =360 st. uhel abc=360;5=72st. rovnostranny trojuhelnik ma wsoucet180st.pokud uhel abc=72st.,uhelpbc=72-60=12st. Trojuhelnik pbc je rovnoramenny pb=bc. Uhel bcp a cpb=180-12=168st. Uhel bcp=168;2=84st

#
Patolízal
nemá to být 66 stupňů?

#
Mo - Oficiální
Nápověda. Uvědomte si, že trojúhelník BCP není obecný.

Možné řešení. Pětiúhelník ABCDE je pravidelný, zejména platí |AB| = |BC|. Trojúhelník ABP je rovnostranný, zejména platí |AB| = |BP|. Odtud vidíme, že |BP| = |BC|, tedy, že trojúhelník BCP je rovnoramenný. Jeho vnitřní úhly u vrcholů P a C jsou proto shodné; k jejich určení stačí znát úhel u vrcholu B (součet velikostí vnitřních úhlů v libovolném trojúhelníku je 180◦). Přitom úhel P BC je rozdílem úhlů ABC a ABP, z nichž první je vnitřním úhlem pravidelného pětiúhelníku (vyjádříme záhy) a druhý je vnitřním úhlem rovnostranného trojúhelníku (má velikost α = 60◦).

Pětiúhelník ABCDE můžeme rozdělit na pět trojúhelníků se společným vrcholem P. Součet vnitřních úhlů pětiúhelníku je roven součtu vnitřních úhlů všech pěti trojúhelníků vyjma úhlů u vrcholu P, tj. 5·180◦−360◦ = 540◦. V pravidelném pětiúhelníku jsou všechny vnitřní úhly shodné, každý má tudíž velikost 540◦: 5 = 108◦.

Odtud konečně umíme vyjádřit β = |?P BC| = |?ABC| − |?ABP| = 108◦ − 60◦ = 48◦
a následně γ = |?BCP| = |?BPC| = (180◦ − 48◦)/2 = 66◦.

Velikost úhlu BCP je 66◦.
Poznámka. Velikost vnitřního úhlu pravidelného pětiúhelníku je možné odvodit také pomocí rozdělení na pět shodných rovnoramenných trojúhelníků jako na následujícím obrázku (S je střed pětiúhelníku, tj. střed jemu opsané kružnice).

Úhel u vrcholu S v každém z těchto trojúhelníků má velikost 360 : 5 = 72◦; součet úhlů u základny je roven 180◦−72◦ = 108◦ , což je také velikost vnitřního úhlu pravidelného pětiúhelníku.

#
Žák
náčrtek je blbě, je to blbě opímenkovaný, mě vyšlo 54°

3 roky  1 Like
avatar









Tipy na související online kalkulačky
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.

 
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1

Další podobné příklady a úkoly:

  • Rovnoramenný lichoběžník
    mo-klm Je dán rovnoramenný lichoběžník ABCD, v němž platí: |AB| = 2|BC| = 2|CD| = 2|DA|: Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikost
  • Z7-I-5 MO 2017
    triangle_1111_6 Prokop zostrojil trojuholník ABC, ktorého vnútorný uhol pri vrchole A bol väčší ako 60° a vnútorný uhol pri vrchole B bol menší ako 60°. Juraj narysoval v polrovine určenej priamkou AB a bodom C bod D, a to tak, že trojuholník ABD bol rovnostranný. Potom
  • Úhly
    triangles_6 Zjisti zda mohou být uvedené hodnoty velikostmi vnitřních úhlů nějakého trojuhelníku: a) 23°10',84°30',72°20' b) 90°,41°33',48°37' c) 14°51',90°,75°49' d) 58°58',59°59',60°3'
  • Rovnoramenný trojúhelník
    iso_51 Narýsujte rovnoramenný trojúhelník ABC, pokud AB = 7cm, velikost úhlu ABC je 47°, ramena | AC | = | BC |. Změřte velikost strany BC v mm.
  • MO - trojúhelníky
    metal Na stranách AB a AC trojúhelníku ABC lěží po řadě body E a F, na úsečce EF leží bod D. Přmky EF a BC jsou rovnoběžné a součastně platí FD : DE = AE : EB = 2:1. Trojúhelník ABC má obsah 27 hektarů a úsečkami EF, AD a DB je rozdělen na čtyři části . Určete
  • Katka MO
    reporter_saved6 Katka narýsovala trojúhelník ABC. Střed strany AB si označila jako X a střed strany AC jako Y . Na straně BC chce najít takový bod Z, aby obsah čtyřúhelníku AXZY byl co největší. Jakou část trojúhelníku ABC může maximálně zabírat čtyřúhelník AXZY ?
  • Množina bodů Z7–I–5.
    triangles_12 Je dán trojúhelník ABC se stranami /AB/=3 cm, /BC/= 10 cm a úhlem ABC = 120°. Narýsujte všechny body X tak, aby platilo, že trojúhelník BCX je rovnoramenný a současně trojúhelník ABX je rovnoramenný se základnou AB.
  • MO Z9 2019 domace kolo
    triangles V trojúhelníku ABC leží bod P ve třetině úsečky AB blíže bodu A, bod R je ve třetině úsečky P B blíže bodu P a bod Q leží na úsečce BC tak, že úhly P CB a RQB jsou shodné. Určete poměr obsahů trojúhelníků ABC a PQC.
  • Sklepy
    Spider-and-Fly V prvním sklepě je víc much než pavouků, ve druhém naopak. V každém sklepě měli mouchy a pavouci dohromady 100 nohou. Určete kolik mohlo být much a pavouků v prvním a kolik ve druhém sklepě. PS. Nám stačí, když napíšete kolik rěšení má tenhle úkol.
  • Vnitřní úhly
    rr_triangle3 Velikost vnitřního úhlu u hlavního vrcholu C rovnoramenného trojúhelníku ABC je 72°. Přímka p, rovnoběžná se základnou tohoto trojúhelníku, rozděluje trojúhelník na lichoběžník a menší trojúhelník. Jak velké jsou vnitřní úhly lichoběžníku?
  • Trojúhelník
    lalala V trojúhelníku ABC se stranou BC délky 2 cm je bod K středem strany AB. Body L a M rozdělují stranu AC na tři shodné úsečky. Trojúhelník KLM je rovnoramenný s pravým úhlem u vrcholu K. Určete délky stran AB, AC trojúhelníku ABC.
  • Půlkruh
    tales-de-mileto V půlkruhu se středem S a průměrem AB je sestrojen rovnostranný trojúhelník SBC. Jaká je velikost úhlu ∠ SAC?
  • Výrobek 7
    mince Výrobek je prodáván za 360 Kč, přičemž prodejní zisk činí 30 %. O kolik procent se sníží prodejní zisk, zlevním-li výrobek o 10 %?
  • MO B 2019 ukol 2
    olympics Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
  • Mo - kružnice
    mo Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která b
  • C – I – 3 MO 2018
    olympics_10 Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
  • Z bodu 2
    ssa Z bodu na kružnici o průměru 8 cm jsou vedeny dvě shodné tětivy, které svírají úhel 60°. Vypočítej délku těchto tětiv.