Příklady na mnohoúhelník

Příklady na pravidelný n-úhelník (synonymum je mnohoúhelník nebo polygon). N-úhelník je uzavřená část roviny ohraničená lomenou čarou. Body, které určují mnohoúhelník, se nazývají vrcholy mnohoúhelníku. Úsečky, které spojují sousední vrcholy, se nazývají strany mnohoúhelníku. Úsečky, které spojují nesousedí vrcholy, se nazývají úhlopříčky. Počet vrcholů, stran a vnitřních úhlů v jednom mnohoúhelníku je stejný a tento počet určuje název mnohoúhelníku: trojúhelník, čtyřúhelník, pětiúhelník atd.

Počet nalezených příkladů: 128

  • Ve společnosti
    TUCWGKGHCVGBPEMEP75TVAR5LA Ve společnosti deseti osob každá osoba podá ruku každé osobě. Kolik bylo podáno rukou?
  • 15-úhelník
    220px-Regular_polygon_15_annotated.svg Vypočítejte obsah pravidelného 15-úhelníka vepsaného do kružnice o poloměru r = 4. Výsledek uveďte s přesností na dvě desetinná místa.
  • Dvanásťuholník
    clocks Vypočítejte velikost menšího z úhlů, který určují přímky A1 A4 a A2 A10 v pravidelném dvanásťuholníku A1A2A3. .. A12. Výsledek uveďte v stupních.
  • Ve čtyřúhelníku
    circle_inscribed_polygon Ve čtyřúhelníku ABCD, jehož vrcholy leží na dané kružnici, je úhel u vrcholu A roven 58 stupňů a úhel při vrcholu B 134 stupňů. Vypočítejte velikosti zbývajících vnitřních úhlů.
  • Trojboký hranol 16
    hranol3b_1 Vypočítejte povrch pravidelného trojbokého hranolu, jehož hrany podstavy mají délku 6 cm a výška hranolu je 15 cm .
  • Daný je
    hexagon Daný je pravidelný šestiúhelník ABCDEF. Bod A má souřadnice [1; 3] a bod D má souřadnice [4; 7]. Vypočtěte součet souřadnic středu jeho opsané kružnice.
  • Soustředné kružnice
    annulus_inscribed_circles Dvě soustředné kružnice s poloměry 1 a 9 ohraničují mezikruží. Tomuto mezikruží je vepsaných n kruhů, které se nepřekrývají. Stanovte nejvyšší možnou hodnotu n.
  • Střecha 11
    hexa_pyramid Střecha má tvar pláště pravidelného šestibokého jehlanu o stěnové výšce v= 5 m a podstavné hraně a= 4 m. Vypočtěte spotřebu plechu na pokrytí střechy, počítáme-li s 15 % ztrát.
  • Vrchol 9
    veza Vrchol věže má tvar pravidelného šestibokého jehlanu. Podstavná hrana má délku 1,2 m, výška jehlanu je 1,6 m. Kolik metrů čtverečných plechu je potřeba na pokrytí vrcholu věže, je-li na spoje, překrytí a odpad zapotřebí 15% plechu navíc?
  • Čtyřstěn 3
    triangularPyramid Pravidelný čtyřstěn je trojboký jehlan, jehož podstava a stěny jsou shodné rovnostranné trojúhelníky. Vypočítejte výšku tohoto tělesa, je-li délka hrany a = 8 cm
  • Hexa pyramida
    hexa_pyramid Vypočítejte výšku pravidelného šestibokého jehlanu s hranou podstavy 5 cm a stěnovou výškou w = 20 cm.
  • Podstavou
    hexa_pyramid_1 Podstavou pravidelného jehlanu je šestiúhelník, kterému je možno opsat kružnici s poloměrem 1 m. Vypočítejte objem jehlanu vysokého 2,5 m.
  • Osmiboký jehlan
    octagonl_pyramid2 Urči objem pravidelného osmibokého jehlanu, jehož výška v = 100 a úhel boční hrany s rovinou podstavy je α = 60°.
  • Pětiúhelník 3
    paper Pruh papíru ve tvaru obdélníka o rozměrech 16 x 4 cm je přeložen po délce tak, že pravý spodní roh je přiložen na levý horní roh. Jakou plochu má vzniklý pětiúhelník?
  • Drátěný model
    hexagonprism Drátěný model pravidelného šestibokého hranolu s podstavnou hranou délky a = 8 cm má výšku v = 12 cm. Těleso se přelepí papírem, podstavy tmavým a plášť bílým. - Vypočtěte v cm největší možnou přímou vzdálenost dvou vrcholů drátěného hranolu (tloušťku drá
  • Šestiúhelník lomeno
    8uhelnik Pravidelný šestiúhelník rozdělte úsečkami na devět zcela shodných dílů; žádný z nich nesmí být v zrcadlovém zobrazení (jednotlivé díly mohou být pouze libovolně pootočeny).
  • Ciferník 2
    cifernik Ve čtyřúhelníku, jehož vrcholy odpovídají na ciferníku bodům 1, 5, 8 a 12 vypočítejte velikost největšího vnitřního úhlu a odchylku úhlopříček.
  • Kolikaúhelník
    ngon Kolikaúhelník má 275 úhlopříček?
  • 5 žáků
    tenis_3 5 žáků z třetí třídy hrálo stolní tenis. Kolik odehráli zápasů, když hrajou každý s každým?
  • Nádrž
    octagon_prism Nádrž má tvar pravidelného osmibokého hranolu bez horní podstavy. Podstavná hrana má a = 3m, boční hrana b = 6m. Kolik plechu třeba na zhotovení nádrže? Neberte v úvahu ztráty, ani tloušťku plechu.

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.



Viz také více informacií na Wikipedii.